
The Safe λ-Calculus

DPhil Transfer thesis

William Blum

Oxford University Computing Laboratory

The Safe λ-Calculus
DPhil Transfer thesis

The Safe λ-Calculus

DPhil Transfer thesis

William Blum

Submitted on September 25, 2006

Last correction: February 21, 2007

Oxford University Computing Laboratory

8

CONTENTS

Part I Academic activities 11

1. First-Year work . 13

1.1 Coursework . 13

1.2 Teaching . 13

1.3 Meetings and conferences . 13

1.4 Research . 13

1.4.1 Game semantics . 13

1.4.2 Verification . 14

2. Research plan . 17

Part II Summary of work so far 19

1. Game semantics . 23

1.1 History . 23

1.1.1 Game semantics . 23

1.1.2 Model of programming languages . 23

1.1.3 The problem of full abstraction for PCF . 24

1.2 Games . 24

1.2.1 Arenas . 25

1.2.2 Games . 26

1.2.3 Constructions on games . 27

1.2.4 Representation of plays . 28

1.2.5 Strategy . 28

1.2.6 Categorical interpretation . 31

1.2.7 Pointers are superfluous for games on arenas of order 2 34

1.2.8 ... but in general pointers are necessary . 36

1.3 The fully abstract game model for PCF . 37

1.3.1 The syntax of PCF . 37

1.3.2 Operational semantics of PCF . 37

1.3.3 Game model of PCF . 37

1.3.4 Full-abstraction of PCF . 40

1.4 The fully abstract game model for Idealized Algol (IA) 42

1.4.1 The syntax of IA . 42

1.4.2 Operational semantics of IA . 43

1.4.3 Game model of IA . 44

1.4.4 Full abstraction of IA . 45

1.5 Algorithmic game semantics . 46

1.5.1 Characterisation of observational equivalence 46

1.5.2 Finitary fragments of Idealized algol . 46

10 Contents

2. Safe λ-Calculus . 49
2.1 Homogeneous Safe λ-Calculus . 50

2.1.1 Type homogeneity . 50
2.1.2 Safe Higher-Order Grammars . 50
2.1.3 Rules of the Safe λ-Calculus . 51
2.1.4 Safe β-reduction . 54
2.1.5 An alternative system of rules . 56

2.2 Safe λ-Calculus without the Homogeneity Constraint 61
2.2.1 Rules . 61
2.2.2 Substitution in the safe lambda calculus . 62
2.2.3 Safe-redex . 63
2.2.4 Particular case of homogeneously-safe lambda terms 64
2.2.5 Examples . 66

3. Computation trees, traversals and game semantics . 69
3.1 Computation tree . 69

3.1.1 η-long normal form . 70
3.1.2 Computation tree . 71
3.1.3 Pointers and justified sequence of nodes . 72
3.1.4 Adding value-leaves to the computation tree 74
3.1.5 Traversal of the computation tree . 75

3.2 Game semantics of simply-typed λ-calculus with Σ-constants 79
3.2.1 Relationship between computation trees and arenas 80
3.2.2 Category of interaction games . 83
3.2.3 The correspondence theorem for the simply-typed λ-calculus without inter-

preted constants . 87

4. Game-semantic characterisation of safety . 95
4.1 Safe λ-Calculus . 95
4.2 Safe PCF and Safe Idealized Algol . 98

4.2.1 Formation rules of Safe IA . 99
4.2.2 Small-step semantics of Safe IA . 99
4.2.3 Safe PCF fragment . 100
4.2.4 Safe IA . 107

5. Further possible developments . 113

Bibliography. 118

Part I

ACADEMIC ACTIVITIES

1. FIRST-YEAR WORK

1.1 Coursework

I have attended the following courses: Automata Logic and Games in Hilary term 2005, Domain
theory in Michaelmas term 2005 and Categories Proofs and Programs in Hilary term 2006.

1.2 Teaching

I was the demonstrator for Network and Operating Systems practicals in Hilary term 2005, I
tutored two groups of students for the Introduction to Specification classes (Hilary 2006) and I
was the marker for one group.

1.3 Meetings and conferences

• I attended Bonn spring school on GAMES in March 2005;

• I attended BCTCS (British Colloquium in Theoretical Computer Science) in Nottingham in
March 2005 where I gave a presentation based on my MSc dissertation “Termination analysis
of a subset of CoreML”;

• I attended PAT Program transformation and Analysis in Copenhagen, July 2005;

• Marktoberdorf Summer School;

• CSL (Computer Science Logic) August 2005: I helped to organise the conference;

• I visited the Isaac Newton Institute in Cambridge in February 2006.

I have also done a presentation during the Computer Laboratory open days.

1.4 Research

1.4.1 Game semantics

During the past months, I have studied a restriction of lambda-calculus called “safe lambda-
calculus”. Safety is a syntactic property originally defined in [35] for higher-order recursion schemes
(grammars). In their paper they proved that the MSO theory of the term tree generated by a
safe recursion scheme of level n is decidable. More recently, Ong proved in [52] that the safety
assumption is in fact not necessary for the decidability of MSO theories.

I am interested in the transposition of the safety property from grammars to lambda terms.
A definition of the safe λ-Calculus was first given in a technical report by Aehlig, de Miranda
and Ong in [11]. One interesting property is that performing substitution on safe terms does not
require a renaming of the variable.

I have investigated different possible definitions of a safe lambda calculus and have proposed
a more general notion of safety that does not assume homogeneity of types while still preserving
the “no variable renaming” property.

I also tried to relate the safety restriction and the size-change termination property defined
in [37, 34]. Jones conjectured that any simply-typed term is size-change terminating, however

14 1. First-Year work

Damien Sereni disproved this conjecture by exhibiting a class of counter-examples ([60]). It turns
out that the simply-typed terms of this class are all safe (but not necessary of homogeneous type)
and not size-change terminating. This suggests that there is no real interesting relation between
safety and size-change termination.

Recently, inspired by my reading on game semantics [8] and by the techniques developed by
Luke Ong in [52], I have proved a result on the game semantics of safe terms: the pointers in
the game semantics of safe simply-typed terms can be recovered uniquely from the sequence of
moves. This result is similar to the standard result in game semantics which says that pointers of
strategies can be recovered uniquely for arena of order 2 at most.

1.4.2 Verification

In parallel, I worked on a separate project with Matthew Hague and Luke Ong. We developed
a SAT-based model checker for verifying Linear Temporal Logic (LTL) formulae on programs
expressed as finite state machines. Our approach combines techniques presented in two papers:
[25, 42].

In [42], McMillan describes an acceleration technique for the SAT-based Bounded Model Check-
ing problem based on Craig interpolants. His algorithm significantly improves the performance of
the standard SAT-based model checking method in the case of positive instances.

Languages definable in LTL correspond exactly to those recognised by a certain class of au-
tomata called Linear Weak Alternating Automata [62], abbreviated LWAA. There is a straight-
forward translation from LTL formulae to LWAAs such that the size of the resulting automaton
is linear in the size of the LTL formula. Checking emptiness of a LWAA amounts to searching
the configuration graph for a lasso verifying certain conditions. In [25], Hammer et al. proposed
the notion of “simple LWAA”. While the “simple” condition does not limit the expressiveness of
LWAAs, it makes the model checking problem more tractable. The authors have implemented
their algorithm in an extension of the SPIN model checker which outperforms the usual SPIN
algorithm on non trivial examples.

Our approach can be summarized as follows: we translate the model checking problem into
an emptiness checking of a simple LWAA. The automata is empty if and only if the formula is
true. The emptiness of the automaton is expressed in term of a reachability problem. As in the
traditional SAT-based bounded-model checking approach ([16]), we construct a boolean formula
which is satisfiable if and only if the desired configuration is reachable in at most k steps (i.e.
there is a counter-example of length k at most).

Furthermore, instead of using the traditional SAT-solver technique, which iterates k until the
completeness threshold is reached, we use the acceleration method described in [42]. The principle
is the following: for every iteration of k, if the formula is not satisfiable then we perform some
over-approximation of the set of initial configuration.

Suppose that the final configuration becomes reachable in k steps from the over-approximated
initial configuration then we are still uncertain whether the formula has a valid counter-example
because the counter-example obtained may be spuriously created by the over-approximation. We
therefore increase k and move on to the next iteration. However, if after performing several over-
approximations we reach a fixed point and the formula is still not satisfiable (not counter-example
of length k at most) then we know that there cannot be any counter-example of any length. We
have therefore reached the completeness threshold and we know that the formula is true.

There are two reasons why we think that our approach may lead to a gain of performance.
Firstly, although determining emptiness of a LWAA is more costly than determining emptiness
of a Büchi automaton, we save time during the construction of the automaton because the size
of a LWAA is linear in the length of the formula as opposed to the standard translation which
produces a Büchi automaton of size exponential in the length of the formula. Secondly, in the case
where there is no counter-example, McMillan’s acceleration method based on over-approximation
permits quick detection of attaintment of the completeness threshold.

We have produced an experimental implementation in OCaml and C. The program parses a
file in the NuSMV format ([17]) containing the Kripke structure of the model and the set of LTL

1.4. Research 15

properties to verify. Our tools can be interfaced with two SAT solvers: ZChaff [54] and MiniSat
[47]. We also use BDD to perform simplification on the propositional formula and to generate the
CNF representation that the SAT solver takes as input.

Compared to the LWAASpin LTL model checker ([25]), our tool performs quite poorly. As
soon as a model is taken into account, our procedure generates increasingly bigger propositional
formulae that the SAT solver struggles to solve. However, for pure LTL emptiness checking, our
tool performs quite well.

It seems disappointing that our approach does not give good results for model checking, however
the reason seems to be that the SAT-solvers we are using produce bad interpolants. In the future,
we would like to interface our model checking tool with other SAT solvers and interpolers.

Furthermore, there are optimisations that we have not finished to implement. These include
the optimization of the encoding of the bounded model checking problem into a propositional
formula. We propose to do some experimental tests to discover the encoding giving the best
performance.

16 1. First-Year work

2. RESEARCH PLAN

My research plan for the coming year is as follows: first I will continue to work on the safe λ-
calculus. My immediate goal is to extend the result I obtained about the unique recoverability of
pointers in the game semantics of Safe simply-typed λ-calculus to the case of other languages like
Safe Idealized Algol. I also wish to investigate applications in algorithmic game semantics. There
are also further questions about safe λ-calculus that have to be addressed: what is the categorical
interpretation of safe λ-calculus? What kind of proof theory do we obtain by the Curry-Howard
isomorphism? Which complexity class is characterised by the safe λ-calculus?

In parallel to that line of research, I will continue to work with Matthew Hague and Luke Ong
on the LTL model checking problem.

18 2. Research plan

Part II

SUMMARY OF WORK SO FAR

21

The first chapter of this part is devoted to the presentation of the basics and main results of
game semantics. The categorical interpretation of game semantics is presented as well as the full
abstraction result for PCF. We also give a brief summary of the main results in algorithmic game
semantics. There is no personal contribution in this chapter.

In the second chapter we present the safe λ-calculus. Originally, safety has been introduced
as a syntactical restriction on higher-order grammars in order to show a decidability result about
MSO theory of infinite trees [35]. In [11], Aehlig, de Miranda and Ong proposed an adaptation of
the safety restriction to the λ-calculus. This restriction gives rise to the safe λ-calculus. We first
present this calculus and then give a more general definition which does not make any assumption
on the types of the terms.

In the third chapter, following ideas described in [52], we introduce the notions of computation
tree of a simply-typed term and traversal over a computation tree. We prove a theorem showing
a correspondence between traversals of the computation tree and the game semantics of a term.
Based on that correspondence, we give a characterisation of the game semantics of safe terms by
a property called “P-incremental-justification”. In P-incrementally-justified strategies, P-pointers
are superfluous (i.e. they can be recovered uniquely from the underlying sequence of moves
and from O-moves’ pointers). This simplification of the game semantics suggests some potential
applications in algorithmic game semantics. We finish the chapter by extending the result to safe
PCF and by giving the key elements for an extension to full Safe Idealized Algol.

22

Chapter 1

GAME SEMANTICS

The aim of this chapter is to introduce game semantics. It starts with a history of game semantics
and a presentation of the full abstraction problem for PCF which has been solved using game
semantics. It proceeds to introduce the basic notions of game semantics and give a categorical
interpretation of games. Finally we show how games are used to define a syntax-independent
model of programming languages like PCF and Idealized Algol (IA).

This chapter is largely based on the tutorial by Samson Abramsky on Game Semantics [8].
Many details and proofs will be omitted and we refer the reader to [31, 9] for a complete description
of game semantics.

1.1 History

1.1.1 Game semantics

In the 1950s, Paul Lorenzen invented Game semantics as a new approach to study semantics of
intuitionistic logic [39]. In this setting, the notion of logical truth is modeled using game theoretic
concepts (mainly the existence of winning strategy).

Four decades later, game semantics is used to prove the full completeness of Multiplicative
Linear Logic (MLL) [4, 30]. Shortly after, a connection between games and linear logic was
established. Game semantics has then emerged as a new paradigm for the study of formal models
for programming languages. The idea is to model the execution of a program as a game played
by two protagonists. The Opponent represents the environment and the Proponent represents the
system. The meaning of the program is then modeled by a strategy for the Proponent.

Subsequently, these game-based model have been used to give a solution to the long-standing
problem of “Full abstraction of PCF” [9, 31, 48].

Based on that major result, and in a more applied direction, games semantics has been used
as a new tool for software verification [23]. This opened-up a new field called Algorithmic Game
Semantics [1].

1.1.2 Model of programming languages

Before the 1980s, there were many approaches to define models for programming languages.
Among the successful ones, there were the axiomatic, operational and denotational semantics.

• Operational semantics gives a meaning to a program by describing the behaviour of a machine
executing the program. It is defined formally by giving a state transition system.

• Axiomatic semantics defines the behaviour of the program through the use of axioms and is
used to prove program correctness by static analysis of the code of the program.

• The denotational semantics approach consists in mapping a program to a mathematical
structure having good properties such as compositionality. This mapping is achieved by
structural induction on the syntax of the program.

24 Chapter 1. Game semantics

In the 1990s, three different independent research groups: Samson Abramsky, Radhakrishnan
Jagadeesan and Pasquale Malacaria [9], Martin Hyland and Luke Ong [31] and Nickau [48] intro-
duced game semantics, a new kind of semantics, in order to solve a long standing problem in the
semanticists community – finding a fully abstract model for PCF.

1.1.3 The problem of full abstraction for PCF

PCF is a simple programming language introduced in a classical paper by Plotkin “LCF considered
as a programming language” ([53]). PCF is based on LCF, the Logic of Computable Functions
devised by Dana Scott in [58]. It is a simply-typed lambda calculus extended with arithmetic
operators, conditional and recursion.

The problem of the Full Abstraction for PCF goes back to the 1970s. In [57], Scott gave a
model for PCF based on domain theory. This model gives a sound interpretation of observational
equivalence – if two terms have the same domain theoretic interpretation then they are obser-
vationally equivalent. However the converse is not true – there exist two PCF terms which are
observationally equivalent but have different domain theoretic denotations. As a result, we say
that the model is not fully abstract.

The key reason why the domain theoretic model of PCF is not fully abstract is that the
parallel-or operator defined by the following truth table

p-or ⊥ tt ff
⊥ ⊥ tt ⊥
tt tt tt tt
ff ⊥ tt ff

is not definable as a PCF term. It is possible to create two different PCF terms that always behave
in the same way except when applied to a term computing p-or. Since p-or is not definable in PCF,
these two terms will have the same denotation. This implies that the model is not fully abstract.

It is possible to patch PCF by adding the operator p-or, the resulting language “PCF+p-or”
becomes fully-abstracted by Scott domain theoretic model [53]. However, the language we are now
dealing with is strictly more powerful than PCF since it allows parallel execution of commands
whereas PCF only permits sequential execution.

Another approach involves the elimination of the undefinable elements (like p-or) by strength-
ening the conditions on the function used in the model. This approach has been followed by
Berry in [14, 15] where he gives a model based on stable functions. Stable functions are a class
of functions smaller than the class of strict and continuous function. Unfortunately this approach
did not succeed.

Full abstract models for PCF were found at the same time and independently by three research
teams: Abramsky, Jagadeesan and Malacaria [9], Hyland and Ong [31] and Nickau [48]. These
three approaches are all based on game semantics.

The game semantics approach has then been adapted to other varieties of programming
paradigms including languages with stores (Idealized Algol), call-by-value [27, 6] and call-by-name,
general references [10], polymorphism [3], control features (continuation and exception), non de-
terminism, concurrency. In all these cases, the game semantics model led to a syntax-independent
fully abstract model of the corresponding language.

1.2 Games

We now introduce formally the notion of game that will be used in the following section to give
a model of the programming languages PCF and Idealized Algol. The definitions are taken from
[8, 31, 9].

The games we are interested in are two-players games. The players are named O for Opponent
and P for Proponent. The game played by O and P is constrained by the arena. The arena defines
the possible moves of the game. By analogy with real board games, the arena represents the board

1.2. Games 25

together with the rules that tell players how they can make their moves on the board. The analogy
with board game will not go beyond that. Instead, it is better to regard our games as dialogs
between two players: player O interviews player P. P’s goal is to answer the initial question asked
by O. P can also ask questions to O if he needs more precision about O’s initial question. Again,
O can ask further question to P. This induces a flow of questions and answers between O and P
that can continue possibly forever. In game semantics the attention is given to the study of this
flow of questions and answers, the notion of winner of the game is not a concern.

1.2.1 Arenas

Our games have two kinds of moves – the questions and the answers. We also distinguish moves
made by O and those made by P. An arena is represented by a directed acyclic graph (DAG)
whose nodes correspond to question moves and leaves correspond to answer moves. It is formally
defined as follows.

Definition 1.2.1 (Arena). An arena is a structure 〈M,λ,`〉 where:

• M is the set of possible moves;

• (M,`) is a directed acyclic graph;

• λ : M → {O,P} × {Q,A} is a labelling function indicating whether a given move is a
question or an answer and whether it can be played by O or P.

λ = [λOP , λQA] where λOP : M → {O,P} and λQA : M → {Q,A}.

– If λOP (m) = O, we call m an O-move otherwise m is a P-move. λQA(m) = Q indicates
that m is a question otherwise m is an answer.

– a leaf l of the DAG (M,`) satisfies λQA(l) = A and a node n satisfies λQA(n) = Q.

• The DAG (M,`) respects the following condition:

(e1) The roots are O-moves: for any root r of (M,`), λOP (r) = O;

(e2) enablers are questions: m ` n⇒ λQA(m) = Q;

(e3) a player’s move must be justified by a move played by the other player: m ` n ⇒
λOP (m) 6= λOP (n).

For the sake of convenience we write the set {O,P}×{Q,A} as {OQ,OA,PQ,PA}. λ denotes
the labelling function obtained from λ after swapping players:

λ(m) = OQ ⇐⇒ λ(m) = PQ

and λ(m) = OA ⇐⇒ λ(m) = PA

The roots of the DAG (M,`) are called the initial moves. Other moves must be enabled by
some other question move. The edges of the DAG induces the enabling relation between moves.

The simplest possible arena, written 1, is the arena with an empty set of moves.

Example 1.2.2 (The flat arena). Let A be any countable set, then the flat arena over A is defined
to be the arena 〈M,λ,`〉 such that M has one move q with λ(q) = OQ and for each element in
A, there is a corresponding move ai in M with λ(ai) = PA for some i ∈ N. The enabling relation
` is defined to be {q ` ai |i ∈ N}. This arena is represented by the following tree whose vertices
represent the moves and edges represent the enabling relation:

q

a1 a2 . . .

The flat arena over N and B is written int and bool respectively.

26 Chapter 1. Game semantics

Once the arena has been defined, the bases of the game are set and the players have something
to play with. We now need to describe the state of the game, for that purpose we introduce
justified sequences of moves :

Definition 1.2.3 (Justified sequence of moves). A justified sequence is a sequence of moves s
together with an associated sequence of pointers. Any move m in the sequence that is not initial
has a pointer that points to a previous move n that justifies it (i.e. n ` m).

Since initial moves are all O-moves, the first move of a justified sequence is necessarily an
O-move

A justified sequence can be encoded as a sequence of pairs – a pair encodes an element of the
sequence together with an index indicating the position where the element points to.

The pointers of a justified sequence are represented with arrows. The following is an example
of justified sequence of moves:

q4 q3 q2 q3 q2 q1

Sequences of moves will be used to record the history of all the moves that have been played.

Notation: we write st or sometimes s · t to denote the sequences obtained by concatenating s
and t. The empty sequence is written ε. Given a sequence s = m1 ·m2 . . .mn we write s≤mi

for
m1 ·m2 . . .mi, the prefix sequence of s up to the move mi. We write s<mi

for m1 ·m2 . . .mi−1.
A justified sequence has two particular subsequences called the P-view and the O-view of the

sequence. The idea is that a view describes the local context of the game. Here is the formal
definition:

Definition 1.2.4 (View). Given a justified sequence of moves s, we define the proponent view
(P-view) written psq by induction:

pεq = ε,

ps ·mq = psq · m if m is a P-move,

ps ·mq = m if m is initial (O-move) ,

ps ·m · t · nq = psq ·m · n if n is a non initial O-move .

The O-view xsy is defined similarly:

xεy = ε,

xs ·my = xsy · m if m is a O-move,

xs ·m · t · ny = psq ·m · n if n is a P-move .

1.2.2 Games

Not all justified sequences will be of interest for the games that we will use. We call legal position
justified sequences that satisfy two additional conditions: alternation and visibility. Alternation
says that players O and P play alternatively. Visibility expresses that each non-initial move is
justified by a move situated in the local context at that point. The visibility condition gives some
coherence to the justification pointers of the sequence.

Definition 1.2.5 (Legal position). A legal position is a justified sequence of move s respecting
the following constraints:

• Alternation: For any subsequence m · n of s, λOP (m) 6= λOP (n).

• Visibility: For any subsequence tm of s where m is not initial, if m is a P-move then m
points to a move in psq and if m is a O-move then m points to a move in xsy.

The set of legal position of an arena A is denoted by LA.

1.2. Games 27

We say that a move n is hereditarily justified by a move m if there is a sequence of move
m1, . . . ,mq such that:

m ` m1 ` m2 ` . . .mq ` n

If a move has no justification pointer, we says that it is an initial move (in that case it must be a
root of the DAG of the arena).

Suppose that n is an occurrence of a move in the sequence s then s � n denotes the subsequence
of s containing all the moves hereditarily justified by n. Similarly, s � I denotes the subsequence
of s containing all the moves hereditarily justified by moves in I.

Definition 1.2.6 (Game). A game is a structure 〈M,λ,`, P 〉 such that

• 〈M,λ,`〉 is an arena;

• P is called the set of valid positions, it is:

– a non-empty prefix closed subset of the set of legal positions,

– closed by initial hereditary filtering: if s is a valid position then for any set I of occur-
rences of initial moves in s, s � I is also a valid position.

Example 1.2.7. Consider the flat arena int. The set of valid position P = {ε, q} ∪ {q · ai |i ∈ N}
defines a game on the arena int.

1.2.3 Constructions on games

We now define game constructors that will be useful later on.
Consider the two functions f : A → C and g : B → C, we write [f, g] to denote the pairing of

f and g defined on the direct sum A + B. Given a game A with a set of moves MA, we use the
filtering operator s � A to denote the subsequence of s consisting of all moves in MA. Although
this notation conflicts with the hereditarily filtering operator, it should not cause any confusion.

Tensor product

Given two games A and B we define the tensor product constructor A⊗B as follows:

MA⊗B = MA +MB

λA⊗B = [λA, λB]

`A⊗B = `A ∪ `B

PA⊗B = {s ∈ LA⊗B|s � A ∈ PA ∧ s � B ∈ PB}.

In particular, n is initial in A⊗B if and only if n is initial in A or B. And m `A⊗B n holds if
and only if m `A n or m `B n holds.

Function space

The game A (B is defined as follows:

MA(B = MA +MB

λA(B = [λA, λB]

`A(B = `A ∪ `B ∪ {(m,n) | m initial in B ∧ n initial in A}

PA⊗B = {s ∈ LA⊗B|s � A ∈ PA ∧ s � B ∈ PB}.

Graphically if we draw a triangle to represent an arena A then the arena for A (B is
represented as follows:

B

A

28 Chapter 1. Game semantics

Cartesian product

The game A&B is defined as follows:

MA&B = MA +MB

λA&B = [λA, λB]

`A&B = `A ∪ `B

PA&B = {s ∈ LA⊗B|s � A ∈ PA ∧ s � B = ε}

∪{s ∈ LA⊗B|s � A ∈ PB ∧ s � A = ε}.

Note that a play of the game A&B is either a play of A or a play of B, whereas a play of the
game A⊗ B may be an interleaving of plays on A and plays on B.

1.2.4 Representation of plays

Plays of the game are usually represented in a table diagram. The columns of the table correspond
to the different components of the arena and each row corresponds to one move in the play. The
first row always represents an O-move, this is because O is the only player who can open a game
(since roots of the arena are O-moves).

For example the play
q q 8 12

on the game int (int is represented by the following diagram:

int ⇒ int
q O

q P
8 O

12 P

When it is necessary, the justification pointers of the play are also shown on the diagram.

1.2.5 Strategy

During a game, the player who has to play may have several choices for his next move. A strategy
is a guide telling the player which move to make when the game is in a given position. There is
no notion of winning strategy since this is not relevant for the games that we are considering.

Definition

Formally, a strategy is a partial function mapping legal positions where P has to play to P-moves.

Definition 1.2.8 (Strategy). A strategy for player P on a given game 〈M,λ,`, P 〉 is a non-empty
set of even-length positions from P such that:

1. if sab ∈ σ then s ∈ σ (no unreachable position);

2. if sab, sac ∈ σ then b = c and b has the same justifier as c (determinacy).

The idea is that the presence of the even-length sequence sab in σ tells the player P that
whenever the game is in position s and player O plays the move a then it must respond by playing
the move b.

The first condition ensures that the strategy σ only considers positions that the strategy itself
could have led to in a previous move. The second condition in the definition requires that this
choice of move is deterministic (i.e. there is a function f from the set of odd length position to
the set of moves M such that f(sa) = b).

For any game A, the smallest possible strategy is called the empty strategy and written ⊥. It
is formally defined by {ε}, which corresponds to a strategy that never responds.

1.2. Games 29

Remark 1.2.9. There is an alternative definition of a strategy. If we regard a strategy as an
appropriated sub-tree of the game tree then it can be represented as the collection of all paths in
this sub-tree, that is to say a certain prefix-closed set (as opposed to the even-length prefix -closed
set of the above definition).

If σ denotes a strategy in the sense of definition 1.2.8 then the corresponding strategy in the
alternative definition would be σ ∪ dom(σ) where

dom(σ) = {sa ∈ P odd
A |∃b.sab ∈ σ}.

Copy-cat strategy

For any arena A there is a strategy on the game A (A called the copy-cat strategy. We write
A1 and A2 to denote the first and second copies of the arena A in the game A (A. If A is the
arena A1 then A⊥ denotes the arena A2 and reciprocally.

Let A be one of the arena A1 or A2. The copy-cat strategy operates as follows: whenever P
has to respond to an O-move played in A, it first replicates this move into the arena A⊥. O then
responds in A⊥ and finally P replicates O’s response back to A.

More formally, the copy-cat strategy is defined by:

idA = {s ∈ P even

A(A | ∀t veven s . t � A1 = t � A2}

where P even
A denotes the set of valid positions of even length in the game A and t veven s denotes

that t is an even length prefix of s.
The copy-cat strategy is also called identity strategy since it is the identity for strategy com-

position as we will see in the next paragraph.

Example 1.2.10. The copy-cat strategy on int is given by the following generic play:

int ⇒ int
q

q
n

n

Note that we introduced this type of diagram in the first place in order to represent plays but,
as we can see here, whenever the represented play is general enough, the diagram can be used to
represent strategies.

The copy-cat strategy on int ⇒ int is given by the following diagram:

(int ⇒ int) ⇒ (int ⇒ int)
q

q
q

q
m

m
n

n

Composition

It is well-known that any model of the simply-typed lambda-calculus is a cartesian closed category
[18]. Games are used to give a fully-abstract model of PCF – an extended simply-typed lambda
calculus – therefore the game model should fit into a cartesian closed category. This category will
have games as objects and strategies as morphisms. In a category, morphisms should be able to
compose together, therefore there should be an appropriate notion of strategy composition.

30 Chapter 1. Game semantics

In the following section we will show how strategies can be used to represent programs. A
remarkable feature of the game model, called compositionality, is that obtaining the model of a
composed program boils down to composing the strategies of the composing programs. Composi-
tion of strategies is therefore an essential feature of game semantics.

The way composition is defined for strategies is similar to “parallel composition plus hiding”
in the trace semantics of CSP [26]. Consider two strategies σ : A (B and τ : B (C that we
wish to compose. For any sequence of moves u on three arenas A, B, C, we call projection of s
on the game A (B and we write u � A,B for the subsequence of s obtained by removing from u
the moves in C and pointers to moves in C. The projection on B (C is defined similarly.

The definition of the projection on A (B differs slightly: u � A,C is the subsequence of
u consisting of the moves from A and C with some additional pointers. We add a pointer from
a ∈ A to c ∈ C whenever a points to some move b ∈ B itself pointing to c. All the pointers to
moves in B are removed.

First we remark that for a given legal position s in the game A (C, there is what is called
an uncovering of s. The uncovering of s is the maximal justified sequence of moves u from the
games A, B and C such that:

• The sequence s, considered as a pointer-less sequence, is a subsequence of u;

• the projection of u on the game A (B belongs to the strategy σ;

• the projection of u on the game B (C belongs to the strategy τ ;

• and the projection of u on the game A (C is a subsequence of s (here the term “subse-
quence” refers to the sequence of nodes together with the auxiliary sequence of pointers).

This uncovering, written uncover(s, σ, τ), is defined uniquely for given strategies σ, τ and legal
position s (this is proved in part II of [31]).

We define σ‖τ to be the set of uncovering of legal positions in A (C:

σ‖τ = {uncover(s, σ, τ) | s is a legal position in A (C}

The composition of σ and τ is defined to be the set of projections of uncovering of legal positions
in A (C:

Definition 1.2.11 (Strategy composition). Let σ : A (B and τ : B (C be two strategies. We
define σ; τ to be:

σ; τ = {u � A,C | u ∈ σ‖τ}

It can be verified that composition is well-defined and associative [31] and that the copy-cat
strategy idA is the identity for composition.

Constraint on strategies

Different classes of strategies will be considered depending on the features of the language that we
want to model. Here is a list of common restrictions that we will consider:

• Well-bracketing: We call pending question the last question in a sequence that has not been
answered. A strategy σ is well-bracketed if for every play s ·m ∈ σ where m is an answer,
m points to the pending question in s.

• History-free strategies: a strategy is history-free if the Proponent’s move at any position of
the game where he has to play is determined by the last move of the Opponent. In other
words, the history prior to the last move is ignored by the Proponent when deciding how to
respond.

• History-sensitive strategies: The Proponent follows a history-sensitive strategy if he needs
to have access to the full history of the moves in order to decide which move to make.

1.2. Games 31

• Innocence: a strategy is innocent if the determination of the Proponent’s move depends
only on a restricted view of the history of the play, mainly the P-view at that point. Such
strategies can be specified by a partial function mapping P-views to P-moves called the
view function. However not every partial function from P-views to P-moves gives rise to an
innocent strategy (a sufficient condition is given in [31]).

The formal definition of innocence follows:

Definition 1.2.12 (Innocence). Given positions sab, ta ∈ LA where sab has even length and
psaq = ptaq, there is a unique extension of ta by the move b together with a justification pointer
such that psabq = ptabq. We write this extension match(sab, ta).

The strategy σ : A is innocent if and only if:





psaq = ptaq
sab ∈ σ

t ∈ σ ∧ ta ∈ PA



 ⇒ match(sab, ta) ∈ σ

1.2.6 Categorical interpretation

In this section we recall some results about the categorical representation of games. These results
with complete details and proofs can be found in [40, 31, 9]. We refer the reader to [18] for more
information about category theory.

We consider the category G whose objects are games and morphisms are strategies. A morphism
from A to B is a strategy on the game A (B.

Three other sub-categories of G are considered, each of them corresponds to some restriction
on strategies: Gi is the sub-category of G whose morphisms are the innocent strategies, Gb has
only the well-bracketed strategies and Gib has the innocent and well-bracketed strategies.

Proposition 1.2.13. G, Gi, Gb and Gib are categories.

Proving this requires us to prove that composition of strategies is well-defined, associative, has
a unit (the copy-cat strategy), preserves innocence and well-bracketedness. See [31, 9] for a proof.

Monoidal structure

We have already defined the tensor product on games in section 1.2.3. We now define the cor-
responding transformation on morphisms. Given two strategies σ : A (B and τ : C (D the
strategy σ ⊗ τ : (A⊗ C) ((B ⊗D) is defined by:

σ ⊗ τ = {s ∈ LA⊗C(B⊗D s � A,B ∈ σ ∧ s � C,D ∈ τ}

It can be shown that the tensor product is associative, commutative and has I = 〈∅, ∅, ∅, {ε}〉
as identity. Hence the game category G is a symmetric monoidal category. Moreover Gi and Gb

are sub-symmetric monoidal categories of G, and Gib is a sub-symmetric monoidal category of Gi,
Gb and G.

Closed structure

Given the games A, B and C, we can transform strategies on A ⊗ B (C to strategies on
A ((B (C) by retagging the moves to the appropriate arenas. This transformation defines an
isomorphism written ΛB and called currying. Therefore the hom-set G(A ⊗ B,C) is isomorphic
to the hom-set G(A,B (C) which makes G an autonomous (i.e. symmetric monoidal closed)
category.

We write evA,B : (A (B)⊗A→ B to denote the evaluation strategy obtained by uncurrying
the identity map on A→ B. evA,B is in fact the copycat strategy for the game (A (B)⊗A → B.

Gi and Gb are sub-autonomous categories of G, and Gib is a sub-autonomous category of Gi, Gb

and G.

32 Chapter 1. Game semantics

Cartesian product

The cartesian product defined in section 1.2.3 is indeed a cartesian product in the category G, Gi,
Gb and Gib.

The projections π1 : A&B → A and π1 : A&B → B are given by the obvious copy-cat
strategies. Given two category morphisms σ : C → A and τ : C → B, the pairing function
〈σ, τ〉 : C → A&B is given by:

〈σ, τ〉 = {s ∈ LC(A&B | s � C,A ∈ σ ∧ s � B = ε}

∪ {s ∈ LC(A&B | s � C,A ∈ σ ∧ s � B = ε}

Cartesian closed structure

Defining the cartesian product is not enough to turn G into a cartesian closed category : we also
need to define a terminal object I and the exponential construct A ⇒ B for any two games A
and B. In fact, this cannot be done in the current category G and we have to move on to another
category of games written C whose objects and morphisms are certain sub-classes of games and
strategies.

Before defining the category C we need to introduce some definitions.
For any game A we define the exponential game denoted by !A. The game !A corresponds to

a repeated version of the game A. Plays of !A are interleavings of plays of A. It is defined as
follows:

M!A = MA

λ!A = λA

`!A = `A

P!A = {s ∈ L!A| for each initial move m, s � m ∈ PA}

The following equalities hold:

!(A&B) = !A⊗!B

I = !I

Definition 1.2.14 (Well-opened games). A game A is well-opened if for any position s ∈ PA the
only initial move is the first one.

Well-opened games have single thread of dialog. They can be turned into games with multiple-
thread of dialog using the promotion operator:

Definition 1.2.15 (Promotion). Consider a well-opened game B. Given a strategy on !A (B,
we define its promotion σ† : !A (!B to be the strategy which plays several copies of σ. It is
formally defined by:

σ† = {s ∈ L!A(!B | for all initial m, s � m ∈ σ}.

It can be shown that promotion is well-defined (it is indeed a strategy) and that it preserves
innocence and well-bracketedness.

We now introduce the category of well-opened games.

Definition 1.2.16 (Category of well-opened games). The category C of well-opened games is
defined as follows:

1. The objects are the well-opened games,

2. a morphism σ : A→ B is a strategy for the game !A (B,

1.2. Games 33

3. the identity map for A is the copy-cat strategy on !A (A (which is well-defined for well-
opened games). It is called dereliction, denoted by derA and defined formally by:

derA = {s ∈ P even

!A(A | ∀t veven s . t � !A = t � A},

4. composition of morphisms σ : !A (B and τ : !B (C denoted by σ # τ : !A (C is defined
as σ†; τ .

C is a well-defined category and the three sub-categories Ci, Cb, Cib corresponding to sub-
category with innocent strategies, well-bracketed strategies and innocent and well-bracketed strate-
gies respectively.

The category C has a terminal object I, for any two games A and B a product A&B and an
exponential A ⇒ B defined to be !A (B. The hom-sets C(A&B,C) and C(A, !B (C) are
isomorphic. Indeed:

C(A&B,C) = G(!(A&B), C)

= G(!A⊗ !B,C)
∼= G(!A, !B (C) (G is a closed monoidal category)

= C(A, !B (C)

Hence C is a cartesian closed category. Moreover Ci and Cb are sub-cartesian closed caterogies of
C and Cib is as sub-cartesian closed category of each of C, Ci and Cb.

Order enrichment

Strategies can be ordered using the inclusion ordering. Under this ordering, the set of strategies
on a given game A is a pointed directed complete partial order : the least upper bound is given
by the set-theoretic union and the least element is the empty strategy {ε}.

Moreover all the operators on strategies that we have defined so far (composition, tensor
product, ...) are continuous. Hence the categories C and G are cpo-enriched.

This property will prove to be useful when it comes to modeling programming languages with
recursion such as PCF.

Intrinsic preorder

We now define a pre-ordering on strategies. The following definition is valid in any of the categories
C, Ci, Cb, Cib.

Let Σ be the game with a single question q and single answer a. There are only two strategies
on Σ: ⊥ = {ε} and > = {ε, qa} which are both innocent and well-bracketed. These strategies are
used to test strategies. For any strategy σ : 1 → A and for any test strategy α : A → Σ we say
that σ passes the test α if σ # α = >.

The intrinsic preorder, written ., is defined as follows: for any strategy σ, τ on the game A,
σ . τ if τ passes all the test passed by σ. Formally:

σ . τ ⇐⇒ ∀α : A→ Σ.σ # τ = > ⇒ τ # α = >

One can check that the relation . is indeed a preorder on the set of strategies of the considered
category. This preorder defines classes of equivalence. Two strategies are in the same equivalence
class if no test can distinguish them. The quotiented category is written C/ . where C ranges
over {Ci, Ci, Cb, Cib}.

Later on we will state the full abstraction of the game semantics model of PCF. This result
will be proved in the quotiented category.

34 Chapter 1. Game semantics

1.2.7 Pointers are superfluous for games on arenas of order 2

For any legal justified sequence of moves s, we write ?(s) for the subsequence of s obtained by
keeping only the unanswered questions in s. It is easy to check that if s satisfies alternation then
?(s) also satisfies alternation.

Lemma 1.2.17. If s · q is a legal position (i.e. justified sequence satisfying visibility and alterna-
tion) satisfying well-bracketing where q is a non-initial question then q points in ?(s).

Proof. By induction on the length of s · q. The base case s = ε is trivial. Let s = s · q, where q is
not initial.

Suppose q is a P-move. We prove that q cannot point to an O-question that has been answered.
Suppose that an O-move q′ occurs before q and is answered by the move a also occurring before
q. Then we have s = s1 · q′O · s2 · aP · s3 · qP where a is justified by q′. a is not in the P-
view ps<qq. Indeed this would imply that some O-move occurring in s3 points to a, but this is
impossible since answer moves are not enablers. Hence the move a must be situated underneath
an O-to-P link. Let us note m the origin of this link, the P-view of s has the following form:
psq = ps1 · q′O · s2 · aP . . .mOq . . . qP where m is an O-move pointing before a.

If m is an answer move then it must point to the last unanswered move – that is to say the
last move in ?(s<m). If m is a question move then it is not initial since there is a link going from
m. Therefore by the induction hypothesis, m must point to a move in ?(s<m).

Since s is well bracketed, all the questions in the segment q′ . . . a are answered. Therefore since
m points to an unanswered question occurring before a, m must point to a move occurring strictly
before q′. Consequently q′ does not occur in the P-view psq. By visibility, q must point in the
P-view psq therefore q does not point to q′.

A similar argument holds if q is an O-move.

This means that in a well-bracketed legal position s ·m, if the move m is not initial then m
must point to a question in ?(s) whether m is a question or an answer. Of course if m is an answer
then it points precisely to the last question in ?(s). Moreover if m is a P-move then by visibility it
should point to an unanswered question in pmq therefore it should also point in ?(pmq). Similarly,
if m is a non initial O-move then it points in ?(xmy).

Lemma 1.2.18. Let s be a legal well-bracketed position.

1. If s = ε or if the last move in s is not a P-answer then ?(psq) = p?(s)q;

2. If s = ε or if the last move in s is not an O-answer then ?(xsy) = x?(s)y.

Proof. (i) By induction on the length of s. The base case is trivial. Step case: suppose that s ·m
is a legal well-bracketed position.

If m is an initial O-question then ?(ps ·mq) =?(m) = m = p?(s) ·mq = p?(s ·m)q.

If m is a non initial O-question then s ·mO = s′ ·qP ·s′′ ·mO where m is justified by q. We have
?(psq) =?(ps′q · q ·m) =?(ps′q) · q ·m. If s′ is not empty then its last move must be an O-move (by
alternation), therefore by the induction hypothesis ?(ps′q) =?(p?(s′)q). By the previous lemma,
the move m must point in ?(s) therefore we have ?(s ·m) =?(s′) · qP · u ·mO for some sequence u.
And therefore p?(s ·m)q = p?(s′)q · qP ·mO.

If m is an O-answer then s ·m = s′ · qP · s′′ ·mO where m is justified by q. Then ?(ps ·mq) =
?(ps′qqa) =?(ps′q). Moreover since s is well-bracketed, we have ?(s) =?(s′). Again the induction
hypothesis permits to conclude.

If m is a P-question then ps ·mq = psq ·m and ?(ps ·mq) =?(psq) ·m. Moreover p?(s ·m)q =
p?(s) · mq = p?(s)q · m. By alternation if s is not empty it must end with an O-move and the
induction hypothesis permits to conclude.

(ii) The argument is similar to (i).

1.2. Games 35

Note that for (i), and similarly for (ii), it is important that s does not end with a P-answer.
For instance consider the legal position

s = qO
0 qP

1 qO
2 qP

3 qO
4 aP

ending with a P-answer. We have p?(s)q = pq0 · q1 · q2 · q3q = q0 · q1 · q2 · q3 but ?(psq) =
?(q0 · q1 · q4 · a) = q0 · q1 · q4.

By the previous remark and lemma we obtain the following corollary:

Corollary 1.2.19. Let s ·m be a legal well-bracketed position.

1. If m is a P-move then it points in ?(psq) = p?(s)q;

2. if m is a non initial O-move then it points in ?(xsy) = x?(s)y.

The height of a move m is the length of the longest sequence of moves m. . .mh in M such
that m ` m2 ` . . . ` mh. The order of a move m written ord(M) is defined to be its height minus
two. The order of an arena 〈M,λ,`〉 is maxm∈M ord(m).

We make the assumption that each question move in the arena enables at least one answer
move. Consequently, moves of order 0 can only enable answer moves.

Lemma 1.2.20 (Pointers are superfluous up to order 2). Let A be an arena of order at most
2. Let s be a justified sequence of moves in the arena A satisfying alternation, visibility, well-
openedness and well-bracketing then the pointers of the sequence s can be reconstructed uniquely
from the underlying sequence of moves.

Proof. Let A be an arena of order 2 at most. The case where A is a DAG with multiple roots
can be reduced to the single root case as follows: since the justified sequence that we consider are
well-opened, the first move in s denoted by m0 is the only initial move in the sequence. m0 must
be the root of some sub-arena A′ of A. Hence we just need to consider the arena A′ instead of A
and treat s as a play of A′ instead of A. We now assume that A has a single root denoted by q0.

Let s be a legal well-bracketed position in LA. Note that since A is of order 2 at most, all the
moves in s except q0 are of order 1 at most.

We prove by induction on the length of s that ?(s) corresponds to one of the case 0, A, B, C
or D shown on the table below, and that the pointers in s can be recovered uniquely.

Let L denote the language L = { pq | q0 ` p ` q ∧ ord(p) = 1 ∧ ord(q) = 0}.

Case λOP (m) ?(s) ∈ where...
0 O {ε}
A P q0
B O q0 · L

∗ · p q0 ` p ∧ ord(p) = 1
C P q0 · L∗ · pq q0 ` p ` q ∧ ord(p) = 1 ∧ ord(q) = 0
D O q0 · L∗ · q q0 ` q ∧ ord(q) = 0

Base cases: If s is the empty sequence ε then there is no pointer to recover and s corresponds to
case 0. If s is a singleton then it must be the initial question q0, therefore there is no pointer to
recover. This corresponds to case A.
Step case: If s = u ·m for some non empty legal well-bracketed position u and move m ∈ MA

then by the induction hypothesis the pointers in u can all be recovered and u corresponds to one
of the cases 0, A, B, C or D. We proceed by case analysis:

case 0 ?(u) = ε. By corollary 1.2.19, m points in p?(u)q = ε. Hence this case is impossible.

case A ?(u) = q0 and the last move m is played by P. By corollary 1.2.19, m points to q0.

If m is an answer to the initial question q0 then s is a complete play and ?(s) = ε, which
corresponds to case 0.

36 Chapter 1. Game semantics

If m is a first order question then ?(s) = q0p and it is O’s turn to play after s therefore s
falls into category B.

If m is an order 0 question then s falls into category D.

case B ?(u) ∈ q0 · L∗ · p where ord(p) = 1 and m is an O-move.

By corollary 1.2.19, m points in p?(u)q = q0p. Since m is an O-move it can only point to p.

If m is an answer to p then ?(s) =?(u ·m) ∈ q0 · L
∗ which is covered by case A and C. If m

is an order 0 question pointing to p then we have ?(s) =?(u) ·m ∈ q0 · L∗ · pm and s falls
into category C.

case C ?(u) ∈ q0 · L
∗ · pq where ord(p) = 1, ord(q) = 0, q0 justifies p, p justifies q and m is played

by P .

Suppose that m is an answer, then the well-bracketing condition imposes q to be answered
first. The move m therefore points to q and we have ?(s) =?(u · m) ∈ q0 · L∗ · p. This
corresponds to case B.

Suppose that m is a question. m is a P-move therefore is cannot be justified by p. It cannot
be justified by q either because q is an order 0 question and therefore enables answer moves
only. Similarly m is not justified by any move in L∗. Hence m must point to the initial
question q0. There are two sub-cases, either m is an order 0 move and then s falls into
category D or m is an order 1 move and s falls into category B.

case D ?(u) ∈ q0 · L∗ · q where ord(q) = 0 and m is played by O.

Again by corollary 1.2.19, m points in x?(u)y = q0q. Since m is a P-move it can only point
to q. Since q is of order 0, it only enables answer moves therefore m is an answer to q. Hence
?(s) =?(u ·m) ∈ q0 · L∗ and s falls either into category A or C.

This completes the induction.

1.2.8 ... but in general pointers are necessary

Up to order 2, the semantics of PCF terms is entirely defined by pointer-less strategies. In other
words, the pointers of a justified sequence satisfying visibility and well-bracketing can be uniquely
reconstructed from the underlying sequence of moves.

At level 3 however, pointers cannot be omitted in general. To illustrate this, consider the two
Kierstead terms of type ((N ⇒ N) ⇒ N) ⇒ N

4:

M1 = λf.f(λx.f(λy.y))

M2 = λf.f(λx.f(λy.x))

We assign a tag to each move so that qi represents the question move of the component N
i

in the type ((N1 ⇒ N
2) ⇒ N

3) ⇒ N
4. Now consider the play s = q4q3q2q3q2q1 where pointers

have been removed. It is possible to retrieve the pointers of the first five moves but there is an
ambiguity for the last move: we do not know whether it points to the first or second occurrence
of q2 in the sequence s.

Note that the visibility condition does not eliminate the ambiguity because both occurrences
of q2 appear in the P-view at that point. Indeed, after recovering the pointers of s up to the
second last move we get:

s = q4 q3 q2 q3 q2 q1,

and the P-view of s is s itself.
In fact these two different possibilities correspond to two different strategies. Suppose that the

link goes to the first occurrence of q2 then it means that the proponent is requesting the value of
the variable x bound in the subterm λx.f(λy....). If P needs to know the value of x, this is because
P is in fact following the strategy of the subterm λy.x. And the entire play is part of the strategy
[[M2]]. If the link points to the second occurrence of q2 then the play belongs to the strategy [[M1]].

1.3. The fully abstract game model for PCF 37

1.3 The fully abstract game model for PCF

In this section we introduce the functional languages PCF. We then describe the game model
introduced in [9] and finally we will state the full abstraction result.

1.3.1 The syntax of PCF

PCF is a simply-typed λ-calculus with the following additions: integer constants (of ground type),
first-order arithmetic operators, if-then-else branching, and the recursion combinator YA : (A →
A) → A for any type A.

The types of PCF are given by the following grammar:

T ::= exp | T → T

and the structure of terms is given by:

M ::= x | λx : A.M | MM |

| n | succ M | pred M

| cond MMM | YA M

where x ranges over a set of countably many variables and n ranges over the set of natural
numbers.

Terms are generated according to the formation rules given in table 1.1 where the judgement
is of the form Γ `M : A.

(var)
x1 : A1, x2 : A2, . . . xn : An ` xi : Ai

i ∈ 1..n

(app)
Γ `M : A→ B Γ ` N : A

Γ `M N : B
(abs)

Γ, x : A `M : B

Γ ` λx : A.M : A→ B

(const)
Γ ` n : exp

(succ)
Γ `M : exp

Γ ` succ M : exp
(pred)

Γ `M : exp

Γ ` pred M : exp

(cond)
Γ `M : exp Γ ` N1 : exp Γ ` N2 : exp

Γ ` cond M N1 N2
(rec)

Γ `M : A→ A

Γ ` YAM : A

Tab. 1.1: Formation rules for PCF terms

1.3.2 Operational semantics of PCF

We give the big-step operational semantics of PCF. The notation M ⇓ V means that the closed
term M evaluates to the canonical form V . The canonical forms are given by the following
grammar:

V ::= n | λx.M

In other word, a canonical form is either a number or a function.
The full operational semantics is given in table 1.3.2. The evaluation rules are defined for closed

terms only therefore the context Γ is not present in the rules. We writeM ⇓ if the judgment M ⇓ V
is valid for some value V .

1.3.3 Game model of PCF

As we have seen in section 1.2, games and strategies form a cartesian closed category, therefore
games can model the simply-typed λ-calculus. We are now about to make this connection explicit
by giving the strategy corresponding to a given λ-term. We will then extend the game model to
PCF and IA.

38 Chapter 1. Game semantics

V ⇓ V
provided that V is in canonical form.

M ⇓ λx.M ′ M ′ [x/N] ⇓ V

MN ⇓ V

M ⇓ n

succ M ⇓ n+ 1

M ⇓ n+ 1

pred M ⇓ n

M ⇓ 0

pred M ⇓ 0

M ⇓ 0 N1 ⇓ V

cond MN1N2 ⇓ V

M ⇓ n+ 1 N2 ⇓ V

cond MN1N2 ⇓ V

M(YM) ⇓ V

YM ⇓ V

Tab. 1.2: Big-step operational semantics of PCF

Simply-typed λ-calculus fragment

In the games that we are considering, the Opponent represents the environment and the Proponent
represents the lambda term. Opponent opens the game by asking a question such as “What is
the output of the function?”. Then the proponent may ask further information such that “What
is the input of the function?”. O can provide P with an answer – the value of the input – or can
pursue with another question. The dialog goes on until O gets the answer to his initial question.

O represents the environment, he is responsible for proving input values while P plays from the
term’s point of view: he is responsible for performing the computation and returning the output
to O. P plays according to the strategy that is associated to the λ-term being modeled.

We recall that in the cartesian closed category C, the objects are the games and the morphisms
are the strategies. Given a simple type A, we will model it as a game [[A]]. A context Γ = x1 :
A1, . . . xn : An will be mapped to the game [[Γ]] = [[A1]] × . . . × [[An]] and a term Γ ` M : A will
be modeled by a strategy on the game [[Γ]] → [[A]]. Since C is cartesian closed, there is a terminal
object 1 (the empty arena) that models the empty context ([[Γ]] = 1).

Let ω denote the set of natural numbers. Consider the following flat arena over ω:

q

1 2 . . .

Then the base type exp is interpreted by the flat game N over the previous arena where the set of
valid position is:

PN = {ε, q} ∪ {qn | n ∈ ω}

In this game, there is only one question: the initial O-question. P can then answer by playing
a natural number i ∈ ω. There are only two kinds of strategies on this arena:

• the empty strategy where P never answer the initial question. This corresponds to a non
terminating computation;

• the strategies where P answers by playing a number n. This models a numerical constant of
the language.

Given the interpretation of base types, we define the interpretation of A→ B by induction:

[[A→ B]] = [[A]] ⇒ [[B]]

where the operator ⇒ denotes the game construction !A (B i.e. the exponential object of
the cartesian closed category C.

1.3. The fully abstract game model for PCF 39

Variables are interpreted by projection:

[[x1 : A1, . . . , xn : An ` xi : Ai]] = πi : [[Ai]] × . . .× [[Ai]] × . . .× [[An]] → [[Ai]]

The abstraction Γ ` λx : A.M : A → B is modeled by a strategy on the arena [[Γ]] → ([[A]] ⇒
[[B]]). This strategy is obtained by using the currying operator of the cartesian closed category:

[[Γ ` λx : A.M : A→ B]] = Λ([[Γ, x : A `M : B]])

The application Γ `MN is modeled using the evaluation map evA,B : (A⇒ B) ×A→ B:

[[Γ `MN]] = 〈[[Γ `M,Γ ` N]]〉 # evA,B

PCF fragment

We now show how to model PCF constructs in the game semantics setting. In the following, each
sub-arena of a game is tagged so that it is possible to distinguish identical arenas occurring in
different components of the game. Moves are also tagged (in the exponent) so that it is possible
to identify the arena component in which the move belongs. We will omit the pointers in the play
when there is no ambiguity.

The successor arithmetic operator is modeled by the following strategy on the arena N
1 ⇒ N

0:

[[succ]] = Prefeven{q0 · q1 · n1 · (n+ 1)0 | n ∈ N}

where PrefevenX denotes the set consisting of the prefixes of even length of plays of X .
The predecessor arithmetic operator is denoted by the strategy

[[pred]] = Prefeven
(
{q0 · q1 · n1 · (n− 1)0 | n > 0} ∪ {q0 · q1 · 01 · 00}

)

Then given a term Γ ` succ M : exp we define:

[[Γ ` succ M : exp]] = [[Γ `M]] # [[succ]]

[[Γ ` pred M : exp]] = [[Γ `M]] # [[pred]]

The conditional operator is denoted by the following strategy on the arena N
3×N

2×N
1 ⇒ N

0:

[[cond]] = Prefeven{q0 · q3 · 0 · q2 · n2 · n0 | n ∈ N} ∪ Prefeven{q0 · q3 ·m · q2 · n2 · n0 | m > 0, n ∈ N}

Given a term Γ ` cond M N1 N2 we define:

[[Γ ` cond M N1 N2]] = 〈[[Γ `M]], [[Γ ` N1]], [[Γ ` N2]]〉 # [[cond]]

The interpretation of the Y combinator is a bit more complicated.
Consider the term Γ ` M : A → A, its semantics f is a strategy on [[Γ]] × [[A]] → [[A]]. We

define the chain gn of strategies on the arena [[Γ]] → [[A]] as follows:

g0 = ⊥

gn+1 = F (gn) = 〈id[[Γ]], gn〉 # f

where ⊥ denotes the empty strategy {ε}.
It is easy to see that the gn forms a chain. We define [[YM]] to be the least upper bound of the

chain gn i.e. the least fixed point of F . Its existence is guaranteed by the fact that the category
of games is cpo-enriched.

Since all the strategies that we have given are innocent and well-bracketed, the game model of
PCF can be interpreted in any of the four categories C, Ci, Cb, Cib.

40 Chapter 1. Game semantics

1.3.4 Full-abstraction of PCF

In this section we state the full abstraction result proved in [9] and [31].

Observational preorder

A context denoted C[−] is a term containing a hole denoted by −. If C[−] is a context then
C[M] denotes the term obtained after replacing the hole by the term M . C[M] is well-formed
provided that M has the appropriate type. Remark: this capture-permitting substitution must be
distinguished from the capture-free substitution which is denoted by M [N/x] for any two terms
M and N .

We say that two programs are observationally equivalent if they can be safely interchanged in
any program context.

Definition 1.3.1 (Observational preorder). We define the relation on terms v as follows: let M
and N be two closed terms of the same type then:

M v N ⇐⇒
for all context C[−] such that C[M] and C[N] are well-formed
closed term of type exp, C[M] ⇓ implies C[N] ⇓

The observational equivalence relation, denoted by ≈, is defined to be the reflexive closure of v.

Soundness and adequacy

A model of a programming language is said to be sound or inequationally sound if whenever the
denotation of two programs are equal then the two programs are observationally equivalent, or
more formally if for any closed terms M and N of the same type:

[[M]] ⊆ [[N]] ⇒M v N.

In a way, soundness is the minimum one can require for a model of programming language: it
guarantees that we can reason about the program by manipulating the object of the denotational
model.

It can be shown that the game model of PCF is sound for evaluation and computationally
adequate. These two properties imply the soundness of the game model:

We said that the evaluation relation ⇓ is sound if the denotation is preserved by evaluation:

Lemma 1.3.2 (Soundness of evaluation). Let M be a PCF term then

M ⇓ V ⇒ [[M]] = [[V]].

Definition 1.3.3 (Computable terms).

• A closed term `M of base type is computable if [[M]] 6= ⊥ implies M ⇓.

• A higher-order closed term ` M : A → B is computable if MN is computable for any
computable closed term ` N : A.

• An open term x1 : A1, . . . , xn : An `M : A→ B is computable if ` M [N1/x1, . . . Nn/xn] is
computable for all computable closed terms N1 : A1, . . . , Nn : An.

A model is computationally adequate if all terms are computable.

Lemma 1.3.4 (Computational adequacy). The game model of PCF is computationally adequate.

We refer the reader to [8] for the proofs.
Inequational soundness follows from the last two lemmas:

Proposition 1.3.5 (Inequational soundness). Let M and N be two closed terms then

[[M]] ⊆ [[N]] =⇒ M v N

Proof. Suppose that [[M]] ⊆ [[N]] and C[M] ⇓ for some context C[−]. Then by compositionality
of game semantics we also have C[[[M]]] ⊆ C[[[N]]]. Lemma 1.3.2 gives [[C[M]]] 6= ⊥, therefore
[[C[N]]] 6= ⊥. Lemma 1.3.4 then implies that C[N] ⇓. Hence M v N .

1.3. The fully abstract game model for PCF 41

Definability

We will now consider only strategies that are innocent and well-bracketed which means that we
work in the category Cib.

The compact morphisms of the category Cib are those with finite view-function. The definability
result says that every compact element of the model is the denotation of some term.

The economical syntax of PCF prevents us from stating this result directly: we need to consider
an extension of PCF with some additional constants. Indeed, there are strategies that are not the
denotation of any term in PCF, for instance the ternary conditional strategy : this strategy denotes
the computation that tests the value of its first parameter, if it is equal to zero or one then it
returns the value of the second or third parameter respectively, otherwise it returns the value of
the fourth parameter. This strategy is illustrated by the left diagram on the next figure.

It is possible to simulate this computation in PCF using the conditional operator. For instance
the term T3 = cond M N1(cond (pred M) N2 N3) has the desired operational semantics. How-
ever, the game semantics denotation of T3 is not given by the ternary conditional strategy. It is
instead given by the right diagram on the following figure.

!N ⊗ !N ⊗ !N ⊗ !N (!N
q

q
0

q
n

n
q

q
1

q
n

n
q

q
m > 1

q
n

n

!N ⊗ !N ⊗ !N ⊗ !N (!N
q

q
0

q
n

n
q

q
1
q
0

q
n

n
q

q
m > 1
q

m− 1 > 0
q
n

n

To overcome this deficiency we add a family of terms to PCF: the k-ary conditionals:

casek N N1 N2 . . . Nk

with the desired operational semantics:

M ⇓ i Ni+1 ⇓ V

casek N N1 N2 . . . Nk ⇓ V
i ∈ {0, . . . , k − 1}.

The denotation of this term is given by the first strategy illustrated above. The extended language
is called PCF’.

We can now prove the definability result:

Proposition 1.3.6 (Definability). Let A be a PCT type and σ be a compact innocent and well-
bracketed strategy on A. There exists a PCF term M such that [[M]] = σ.

42 Chapter 1. Game semantics

Note that definability is proved for PCF’ and not for PCF. Nevertheless, PCF’ is a conservative
extension of PCF: if M and N are terms such that for any PCF-context C[−], C[M] ⇓⇒ C[N] ⇓
then the same is true for any PCF’-context. This is because casek constructs can be “simulated”
in PCF, for instance case3 can be replaced by the PCF term T3 which shares the same operational
semantics.

This observation will allow us to use definability in PCF’ to prove the full-abstraction of PCF.

Full abstraction

Full abstraction of PCF cannot be stated directly in the category Cib. Instead we need to consider
the quotiented category Cib/ .ib.

First we need to show that Cib/ .ib is a model of PCF. Cib/ .ib is a posset-enriched cartesian
closed category. The game semantics of the basic types and constants of PCF can be transposed
from Cib to Cib/ .ib. Unfortunately it is not known whether Cib/ .ib is enriched over the category
of CPOs. However it can be proved that it is a rational category [9] and this suffices to ensure
that Cib/ .ib is indeed a model of PCF. The full abstraction of the game model then follows from
proposition 1.3.5 and 1.3.6:

Theorem 1.3.7 (Full abstraction). Let M and N be two closed IA-terms.

[[M]] -ib [[N]] ⇐⇒ M v N

where -ib denotes the intrinsic preorder of the category Cib.

1.4 The fully abstract game model for Idealized Algol (IA)

We now extend the work of the previous section to the language IA, an imperative extension of
PCF. We start by giving the syntax and operational semantics of the language, we then describe
the game model which was introduced in [7]. Finally we will state the full abstraction result for
the game model.

1.4.1 The syntax of IA

IA is an extension of PCF introduced by J.C. Reynold in [55]. It adds imperative features such
as local variables and sequential composition. On top of exp, PCF has two new types: com for
commands and var for variables. There is a constant skip of type com which corresponds to the
command that does nothing.

Commands can be composed using the sequential composition operator seqA: suppose that
M and N are of type com and A respectively then they can be composed to form the term
S = seqAMN : com. S denotes program that executes M until it terminates and then behaves
like N : A. If A = exp then the expression is allowed to have a side-effect and S returns the
expression computed by N , if A = com then the command N is executed after M . We say that
the language has active expressions to indicate the presence of the sequential operator seqexp in
the language.

Local variables are declared using the new operator, variable content is altered using assign

and retrieved using deref.

In addition IA has the constant mkvar that can be used to create a particular kind of variables.
The mkvar operator works in an object oriented fashion: it takes two arguments, the first one is
a function (called the acceptor) that affects a value to the variable and the second argument is
an expression that returns a value from the variable. This mechanism is similar to the “set/get”
object programming paradigm used by C++ programmers.

Variables created with mkvar are less constrained than the variables created with new. Indeed,
variables created with new act like memory cells, they obey the following rule: the value read from

1.4. The fully abstract game model for Idealized Algol (IA) 43

the variable is always the last value that has been assigned to it. This rule does not apply to
variables created with mkvar. For instance the variable:

mkvar (λv.skip) 0

will always return 0 even if another number has been assigned it.

One may think that this addition to the language is artificial, however the full abstraction
result of the game model of IA relies upon this addition.1

The set of additional formations rules completing those of PCF are given in table 1.3. Judge-
ments are of the form Γ `M : A. If Γ = ∅ then we say that M is a closed term.

Γ `M : com Γ ` N : A

Γ ` seqA M N : A
A ∈ {com, exp}

Γ `M : var Γ ` N : exp

Γ ` assign M N : com

Γ `M : var

Γ ` deref M : exp

Γ, x : var `M : A

Γ ` new x in M
A ∈ {com, exp}

Γ `M1 : exp → com Γ `M2 : exp

Γ ` mkvar M1 M2 : var

Tab. 1.3: Formation rules for IA terms

1.4.2 Operational semantics of IA

The operational semantics of IA is given in a slightly different form compared to PCF. Instead of
giving the semantics for closed terms we consider terms whose free variables are all of type var.
Terms are “closed” by means of stores. A store is a function mapping free variables of type var to
natural numbers. Suppose Γ is a context containing only variables of type var, then we say that
Γ is a var-context. A store with domain Γ is called a Γ-store. The notation s | x 7→ n refers to
the store that maps x to n and acts according to the store s otherwise.

The canonical forms for IA are given by the grammar:

V ::= skip | n | λx.M | x | mkvar M N

where n ∈ N and x : var.

In IA, a program is a term together with a Γ-store such that Γ ` M : A. The evaluation
semantics is expressed by the judgment form:

s,M ⇓ s′, V

where s and s′ are Γ-stores, V is a canonical form and Γ ` V : A.

The operational semantics for IA is given by the rule of PCF (table 1.3.2) together with the
rules of table 1.4.2 where the following abbreviation is used:

M1 ⇓ V1 M2 ⇓ V2

M ⇓ V
for

s,M1 ⇓ s′, V1 s′,M2 ⇓ s′′, V2

s,M ⇓ s′′, V

1 McCusker showed in [41] that the game model of IA with mkvar which is fully abstract with respect to the
observational preorder is also fully abstract for the language without mkvar but for observational equivalence only.
Hence the model is equationally but not inequationally fully abstract for IA without mkvar.

44 Chapter 1. Game semantics

Sequencing
M ⇓ skip N ⇓ V

seq M N ⇓ V

Variables
s,N ⇓ s′, n s′,M ⇓ s′′, x

s, assign M N ⇓ (s′′ | x 7→ n), skip

s,M ⇓ s′, x

s, deref M ⇓ s′, s′(x)

mkvar
N ⇓ n M ⇓ mkvar M1 M2 M1 n ⇓ skip

assign M N ⇓ skip

N ⇓ mkvar M1 M2 M2 ⇓ n

deref M ⇓ n

Block
(s | x 7→ 0),M ⇓ (s′ | x 7→ n), V

s, new x in M ⇓ s′, V

Tab. 1.4: Big-step operational semantics of IA

1.4.3 Game model of IA

All the strategies used to model PCF are well-bracketed and innocent. On the other hand, to
obtain a model of IA we need to introduce strategies that are not innocent. This is necessary to
model memory cell variable created with the new operator. The intuition is that a cell needs to
remember the last value which was written in it in order to be able to return it when it is read,
and this can only be done by looking at the whole history of moves, not only those present in the
P-view. Hence we now consider the categories C and Cb.

Base types

The type com is modeled by the flat game with a single initial question run and a single answer
done. The idea is that O can request the execution of a command by playing run, P then executes
the command and if it terminates, acknowledges it by playing done.

The variable type var is modeled by the game comN × exp illustrated below:

ok

write0 write1 write2 . . . read

0 1 2 . . .

Constants

skip is interpreted by the strategy {ε, run·done}. The sequential composition seqexp is interpreted
by the following strategy:

!com ⊗ !exp
seqexp

(exp

q
run

done

q
n

n

Assignment assign and dereferencing deref are denoted by the following strategies (left and

1.4. The fully abstract game model for Idealized Algol (IA) 45

right respectively):

!var ⊗ !exp
assign

(com

q
q
n

writen

ok

done

!var
deref

(exp

q
read

n
n

mkvar is modeled by the paired strategy 〈mkvaracc, mkvarexp〉 where mkvaracc and mkvarexp

are the following strategies:

!(!exp (com) ⊗ !exp
mkvaracc

(comω

writen

run

q
n

done

ok

!(!exp (com) ⊗ !exp
mkvarexp

(exp

read

q
n

n

The strategies used until now are all innocent. In order to model the new operator, we need
to introduce non-innocent strategies, sometimes called knowing strategies. We define the knowing
well-bracketed strategy cell : I (!var that models a storage cell: it responds to write with ok

and responds to read with the last value written or 0 if no value has yet been written.
Consider the term Γ, x : var `M : A modeled by [[M]] then the term Γ ` new x in M : A will

be modeled by the strategy (id[[Γ]] ⊗ cell) # [[M]] on the game !Γ (com.

1.4.4 Full abstraction of IA

We now state the full abstraction result. All the details are omitted, the reader is referred to [8, 5]
for the proofs.

Inequational soundness

The inequational soundness result can be also proved for IA. Proving soundness of the evaluation
requires a bit more work than in the PCF case because the store needs to be made explicit. Also,
we need to define an appropriate notion of computable term that takes into account the presence
of stores in the evaluation semantics. It is possible to prove that the model is computational
adequate. The inequational soundness then follows from evaluation soundness and computational
adequacy.

Proposition 1.4.1 (Inequational soundness). Let M and N be two IA closed terms then

[[M]] ⊆ [[N]] =⇒ M v N

Definability

The proof of definability is based on a factoring argument: strategies in Gb can all be obtained
by composing the non-innocent strategy cell with an innocent strategy. The strategy cell can
therefore be viewed as a generic non-innocent strategy. Using this factorization argument, it is
possible to prove the definability result:

Proposition 1.4.2 (Definability). Let σ be a compact well-bracketed strategy on a game A de-
noting a IA type. There is an IA-term M such that [[M]] = σ.

46 Chapter 1. Game semantics

Full abstraction

Full abstraction for the model Cb is a consequence of proposition 1.4.1 and 1.4.2:

Theorem 1.4.3 (Full abstraction). Let M and N be two closed IA-terms.

[[M]] -b [[N]] ⇐⇒ M v N

where -b denotes the intrinsic preorder of the category Cb.

1.5 Algorithmic game semantics

After the resolution of the “Full Abstraction of PCF” problem, game semantics has become a
very successful paradigm in fundamental computer science. It has permitted to give full abstract
semantics for a variety of programming languages. More recently, game semantics has emerged as
a new approach to program verification and program analysis. In particular in the paper [23], the
authors considered a fragment of Idealized Algol for which the game semantics of programs can be
expressed simply using regular expressions. In this setting, observational equivalence of programs
becomes decidable. Consequently, numbers of interesting verification problems become solvable.
This development opened up a new direction of research called Algorithmic game semantics.

1.5.1 Characterisation of observational equivalence

In [5] it is shown that observational equivalence of IA is characterised by the equality of the set
of complete plays.

A play of a game is complete if it is maximal and all question have been answered. A game
is simple if the complete plays are exactly those in which the initial question has been answered.
It can be shown that for any IA type T , [[T]] is a simple game. The following characterisation
theorem holds for simple games:

Theorem 1.5.1 (Characterisation Theorem for Simple Game (Abramsky, McCusker 1997)). Let
σ and τ be strategies on a simple game A then:

σ ≤ τ ⇐⇒ comp(σ) ⊆ comp(τ)

Therefore the game semantics of an IA term is fully determined by the set of complete plays
of the strategy denoting it.

1.5.2 Finitary fragments of Idealized algol

We introduce some fragments of the language IA. Firstly, Finitary Idealized Algol denotes the
recursion-free sub-fragment of IA over finite ground types (i.e. N is replaced by the set 0..max for
some fixed value max).

Definition 1.5.2 (ith order IA term). A term Γ `M : T of finitary Idealized algol is an ith-order
term if any sequent Γ′ ` N : A appearing in the typing derivation of M is such that ord(A) ≤ i
and all the variables in Γ′ are of order strictly less than i.

IAi denotes the fragment of finitary Idealized Algol consisting of the collection of ith-order
terms.

IAi + while denotes the fragment IAi augmented with primitive recursion : the formation rules
of IAi + while are those of IAi together with the following rule:

Γ `M : bool Γ ` N : com

Γ ` while Mdo N : com
where ∀x ∈ Γ : ord(x) < i

1.5. Algorithmic game semantics 47

Finally IAi + Yj where j < i denotes the fragment IAi augmented with a set of fixed-point
iterators YA : (A → A) → A for any type A of order j at most. The formation rules of IAi + Yj

are those of IAi together with the following rule:

Γ ` λx.M : A→ A

Γ ` YAM : A
where ∀x ∈ Γ : ord(x) < i and ord(A) ≤ j

We recall the observational equivalence decision problem: given two β-normal forms M and N
in a given fragment of IA, does M ≈ N hold?

This problem has been investigated and decidability results have been obtained for a complete
class of fragments of Idealized Algol. These results help us to understand the limits of Algorithmic
Game Semantics. We now present briefly those results.

IA2 fragment

In [23], the authors show that in the IA2 fragment, the set of complete plays are representable by
extended regular languages.

Lemma 1.5.3 (Ghica and McCusker 2000). For any IA2-term Γ ` M : T , the set of complete
plays of [[Γ `M : T]] is regular.

Since equivalence of regular expression is decidable, this shows decidability of observational
equivalence of IA2-terms. In the same paper they show that the same result holds for the IA2+while

fragment.
In [49], it is shown that observational equivalence is undecidable for IA2 + Y1.

Other fragments of IA

Observational equivalence is decidable for IA3. This is proved in [49] by reduction to the Determin-
istic Push-down Automata Equivalence problem. Unfortunately, this result cannot be extended
beyond order 3: Murawski showed in [44] that the problem is undecidable for IAi with i ≥ 4.

In [45], Murawski and Walukiewicz show decidability for IA3 + while. They also prove that for
IA3 and IA3 + while the problem lies in EXPTIME.

In [46] it is shown that IAi + Y0 for i = 1, 2, 3 is as difficult as the DPDA equivalence problem.
This problem is decidable [59] but no complexity result is known about it. We only know that it
is primitive recursive [61].

The complete classification

Fragment pure +while +Y0 +Y1

IA0 PTIME ×(i) × ×
IA1 coNP PSPACE DPDA EQUIV ×
IA2 PSPACE PSPACE DPDA EQUIV undecidable
IA3 EXPTIME EXPTIME DPDA EQUIV undecidable

IAi, i ≥ 4 undecidable undecidable undecidable undecidable

Notes : The × symbol denotes undefined IA fragments. (i) Adding iteration to IA0 does not
increase the power of the language since variables are forbidden in the language.

The coNP and PSPACE results are due to Murawski [43].

48 Chapter 1. Game semantics

Chapter 2

SAFE λ-CALCULUS

In [35], the authors introduced a restriction on higher-order grammars called safety in order to
study the infinite hierarchy of trees recognized by a higher-order pushdown automaton. They
proved that trees recognized by pushdown automata of level n coincide with trees generated
by safe higher-order grammars of level n. This characterisation permitted them to prove the
decidability of the monadic second-order theory of infinite trees recognized by a higher-order
pushdown automaton of any level.

Safety has also appeared in a different form in [19] under the name restriction of derived types.
The forthcoming thesis of Jolie de Miranda [21] contains a comparison of safety and the restriction
of derived types.

More recently, Ong proved in [52] that the safety assumption of [35] is in fact not necessary.
More precisely, the paper shows that the MSO theory of trees generated by order-n recursion
schemes is n-EXPTIME complete.

For this particular problem, safety happens to be an artificial restriction. However when the
safety condition is transposed to the simply-typed λ-calculus, it gives some interesting proper-
ties. In particular, for safe terms, it becomes unnecessary to rename variables when performing
substitution.

This chapter starts with a presentation of the original version of the safe λ-calculus where types
are required to satisfy a condition called homogeneity. We then give a more general definition which
does not require type homogeneity.

50 Chapter 2. Safe λ-Calculus

2.1 Homogeneous Safe λ-Calculus

2.1.1 Type homogeneity

Let Types be the set of simple types generated by the grammar A ::= o | A → A. Any type
different from the base type o can be written (A1, · · · , An, o) for some n ≥ 1, which is a shorthand
for A1 → · · · → An → o (by convention, → associates to the right). If T = (A1, · · · , An, o) then
the arity of T , written arity(T), is defined to be n.

Suppose that a ranking function rank : Types −→ (L,≤) is given where (L,≤) is any linearly
ordered set. Possible candidates for the ranking function are:

• ord : Types −→ (N,≤) with ord(o) = 0 and ord(A→ B) = max(ord(A) + 1, ord(B));

• height : Types −→ (N,≤) with height(A → B) = 1 + max(height(A), height(B)) and
height(o) = 0 ;

• nparam : Types −→ (N,≤) with nparam(o) = 0 and nparam(A1, · · · , An) = n;

• ordernp : Types −→ (N × N,≤) with ordernp(t) = 〈order(t), nparam(t)〉 for t ∈ Types.

Following [35], we say that a type is rank-homogeneous if it is o or if it is (A1, · · · , An, o) with the
condition that rank(A1) ≥ rank(A2) ≥ · · · ≥ rank(An) and each A1, . . . , An is rank-homogeneous.

Suppose that A1, A2, . . . , An are n lists of types, where Aij denotes the jth type of list Ai

and li the size of Ai, then the notation A = (A1 | · · · |Ar | o) means that

• A is the type (A11, A12, · · · , A1l1 , A21, · · · , A2l2 , · · ·An1, · · · , Anln , o)

• ∀i : ∀u, v ∈ Ai : rank(u) = rank(v)

• ∀i, j.∀u ∈ Ai.∀v ∈ Aj .i < j =⇒ rank(u) > rank(v)

and therefore A is rank-homogenous. This notation organises the Aijs into partitions according
to their ranks. Suppose B = (B1 | · · · |Bm | o), we write (A1 | · · · |An |B) to mean

(A1 | · · · |An |B1 | · · · |Bm | o).

From now on, we only consider the rank function ord. We will use the term “homogeneous” to
refer to ord-homogeneity.

2.1.2 Safe Higher-Order Grammars

We now present the original notion of safety introduced in [35] as a restriction for higher-order
grammars. We present briefly the notion of higher-order grammar. The reader is referred to
[35, 21, 11] for more details.

Suppose that Γ is a set of typed symbols then the set of applicative terms written T (Γ) is the
closure of Γ under the application rule i.e. if s : A→ B and t : A are in T (Γ) then so is st : B.

Definition 2.1.1 (Higher-order grammar). A higher-order grammar is a tuple 〈Σ,N , V,R, S〉,
where

• Σ is a ranked alphabet of terminals of order at most 1,

• V is a finite set of typed variables,

• N is a finite set of homogeneously-typed non-terminals,

• S a distinguished symbol of N of ground type, called the start symbol,

2.1. Homogeneous Safe λ-Calculus 51

• R is a finite set of production rules, one for each F : (A1, . . . , An, o) ∈ N , of the form

Fz1 . . . zm → e

where zi is a variable of type Ai and e is an applicative term of type o in T (Σ∪N∪{z1 . . . zm}).
The zis are called the parameters of the rule.

A higher-order recursion scheme is a deterministic higher-order grammar i.e. for each non-
terminal F ∈ N there is exactly one production rule with F on the left hand side. Higher-order
recursion schemes are used as generators of infinite trees.

The order of a rewrite rule is the order of the non-terminal symbol appearing on the left hand
side of the rule. The order of a grammar is the highest order of its non-terminals.

Safety is a syntactic restriction on higher-order grammars. It can be formulated as follows:

Definition 2.1.2 (Safe higher-order grammar). Let G be a higher-order grammar G of order n
whose non-terminals are of homogeneous type. G is unsafe if and only if there is a rewrite rule
Fz1 . . . zm → e where e contains a subterm t such that:

1. t occurs in an operand position in e,

2. t is of order k > 0,

3. t contains a parameter of order strictly less than k.

G is safe if it is not unsafe.

Let us illustrate the definition with an example taken from [35]:

Example 2.1.3. Let f : (o, o, o), g, h : (o, o) and a, b : o be Σ constants. The grammar of level 3
with non-terminals S : o and F : ((o, o), o, o, o) and production rules:

S → Fgab

Fϕxy → f(F (Fϕx)y(hy))(f(ϕx)y)

is not safe because the term Fϕx : (o, o) containing a variable of order 0 occurs at an operand
position in the right-hand side expression of the second rule.

On the other hand, the grammar with the following production rules is safe:

S → G(ga)b

Gzy → f(G(Gzy)(hy))(fzy)

Moreover it can be shown that these two grammars are equivalent in the sense that they generate
the same infinite tree.

2.1.3 Rules of the Safe λ-Calculus

There is a correspondence between higher-order grammars and the simply-typed λ-calculus. The
non-terminals of a recursion scheme can be interpreted as λ-abstractions in the simply-typed λ-
calculus. The Σ-constants are interpreted as “constructors” constants (in the sense of constructor
used in functional programming languages to represent abstract data-types such as trees). The
notions of variable and application are directly transposed to the equivalent notions in the simply-
typed λ-calculus. Using this analogy it is possible to derive a version of the safety restriction for
the λ-calculus.

The safe λ-calculus has been first proposed in [12], a corrected definition appeared in [50]. The
definition that we give here is slightly more general in the sense that we allow the use of Σ-constants
of any higher-order type whereas the original definition only allows first-order constants.

52 Chapter 2. Safe λ-Calculus

The safe λ-calculus is a sub-system of the simply-typed λ-calculus. Typing judgements (or
terms-in-context) are of the form:

x1 : A1 | · · · |xn : An `M : B

which is shorthand for x11 : A11, · · · , x1r : A1r, A21, . . . `M : B such that the context variables
are listed in decreasing type order and with the condition that ord(xik) < ord(xjl) for any k, l and
i < j.

Valid typing judgements of the system are defined by induction over the following rules, where
∆ is a given homogeneously-typed alphabet i.e. a countable set of symbols such that each symbol
has an homogeneous type, and Σ is a set of homogeneously-typed constants:

(wk)
Γ `M : B Γ ⊂ ∆

∆ `M : B
(perm)

Γ `M : B σ(Γ) homogeneous

σ(Γ) `M : B

(Σ-const)
` b : A

b : A ∈ Σ (var)
xij : Aij ` xij : Aij

(abs)
x1 : A1 | · · · |xn+1 : An+1 `M : B ord(An+1) ≥ ord(B) − 1

x1 : A1 | · · · |xn : An ` λxn+1 : An+1.M : (An+1 |B)

(app)
Γ `M : (B1 | · · · |Bm | o) Γ ` N1 : B11 · · · Γ ` Nl : B1l l = |B1|

Γ `MN1 · · ·Nl : (B2 | · · · |Bm | o)

(app+)
Γ `M : (B1 | · · · |Bm | o) Γ ` N1 : B11 · · · Γ ` Nl : B1l l < |B1|

Γ `MN1 · · ·Nl : (B |B2 | · · · |Bm | o)

where B1 = B11, . . . , B1l, B with the condition that every variable in Γ has an order strictly
greater than ord(B1).

Property 2.1.4 (Basic properties). Suppose Γ `M : B is a valid judgment then

(i) B is homogeneous;

(ii) every free variable of M has order at least ord(B);

(iii) fv(M) `M : B,

where fv(M) ⊆ Γ denotes the context constituted of the variables in Γ occurring free in M .

Proof. (i) and (ii) are proved by an easy structural induction. (iii) is due to the fact that the
weakening rule is the only rule which can introduce a variable not occurring freely in M in the
context of a typing judgement.

We now define a special kind of substitution that performs simultaneous substitution and
permits variable capture i.e. that does not rename variables when the substitution is performed
on an abstraction.

Definition 2.1.5 (Capture-permitting simultaneous substitution (for homogeneous safe terms)).
We use the notation

[
N/x

]
for [N1 . . . Nn/x1 . . . xn] and y : A for y1 : A1, . . . , yp : Ap. A safe term

has necessarily one of the forms occurring on the left-hand side of the following equations, where

2.1. Homogeneous Safe λ-Calculus 53

M , N1, . . . Nl are safe terms. The capture-permitting simultaneous substitution is then defined
by:

c
[
N/x

]
= c where c is a Σ-constant

xi

[
N/x

]
= Ni

y
[
N/x

]
= y if y 66= xi for all i,

(MN1 . . . Nl)
[
N/x

]
= (M

[
N/x

]
)(N1

[
N/x

]
) . . . (Nl

[
N/x

]
)

(λy : A.M)
[
N/x

]
= λy.M

[
N � I/x � I

]

where I = {i ∈ 1..n | xi 6∈ y}

where � is the index filtering operator: if s is a sequence and I a set of indices then s � I is the
subsequence of s obtained by keeping only the element in s at positions in I.

This substitution is well-defined for safe terms in the sense that safety is preserved by substi-
tution:

Lemma 2.1.6 (Capture-permitting simultaneous substitution preserves safety). Let Γ ∪ x ` M
be a safe term where x denotes a list of variables (which do not necessarily belong to the same
partition).

For any safe terms Γ ` N1, · · · ,Γ ` Nn, the capture-permitting simultaneous substitution
M [N1/x1, · · · , Nn/xn] is safe. In other words, the following judgment is valid:

Γ `M [N1/x1, · · · , Nn/xn]

Proof. An easy proof by an induction on the structure of the safe term.

With the traditional substitution, it is necessary to rename variables when performing substi-
tution on an abstraction in order to avoid possible variable capture. As a consequence, in order
to implement substitution one needs to have access to an unbound number of variable names.
An interesting property of the homogeneous Safe λ-Calculus is that variable capture never occurs
when performing substitution. In other words, the traditional substitution can be safely replaced
by the capture-permitting substitution:

Lemma 2.1.7 (No variable capture lemma). In the safe λ-calculus, there is no variable capture
when performing the following capture-permitting simultaneous substitution:

M [N1/x1, · · · , Nn/xn]

provided that Γ ∪ x `M , Γ ` N1, · · · ,Γ ` Nn are valid judgments.

Proof. We prove the result by induction. The variable, constant and application cases are trivial.
For the abstraction case, suppose M = λy : A.P where y = y1 . . . yp. The capture-permitting
simultaneous substitution gives:

M
[
N/x

]
= λy.P

[
N � I/x � I

]
where I = {i ∈ 1..n | xi 6∈ y}.

By the induction hypothesis there is no variable capture in P
[
N � I/x � I

]
. Hence variable

capture can only happen when the variable yj occurs freely in Ni and xi occurs freely in P for
some i ∈ I and j ∈ 1..p. In that case, property 2.1.4 (ii) gives:

ord(yj) ≥ ord(Ni) = ord(xi)

Moreover i ∈ I therefore xi 6∈ y and since xi occurs freely in P , xi must also occur freely in
the safe term λy.P . Thus, property 2.1.4 (ii) gives:

ord(xi) ≥ ord(λy1 . . . yp.T) ≥ 1 + ord(yj) > ord(yj)

which, together with the previous equation, gives a contradiction.

54 Chapter 2. Safe λ-Calculus

2.1.4 Safe β-reduction

We now introduce the notion of safe β-redex and show how to reduce them using the capture-
permitting simultaneous substitution. We will then show that a safe β-reduction reduces to a safe
term.

In the simply-typed lambda calculus a redex is a term of the form (λx.M)N . We generalize this
notion to the safe lambda calculus. We call multi-redex a term of the form (λx1 . . . xn.M)N1 . . . Nl

(it is not required to have n = l).
We say that a multi-redex is safe if it respects the formation rules of the safe λ-calculus:

the multi-redex (λx1 . . . xn.M)N1 . . . Nl is a safe redex if the variable x1, . . . , xn are abstracted
altogether at once using the abstraction rule and if the terms N1 . . . Nl are applied to the term
λx1 . . . xn.M at once using either the rule (app+) or (app). The formal definition follows:

Definition 2.1.8 (Safe redex). A safe redex is a term of the form:

(λx.M)N1 . . .Nl

such that

• variables x = x1 . . . xn are abstracted altogether by one occurrence of the rule (abs) in the
proof tree (possibly followed by the weakening rule). This implies that:

ord(M) − 1 ≤ ord(x) = ord(x1) = . . . = ord(xn);

• the terms (λx.M), N1, Nl are applied together at once using either:

– the rule (app):

Σ ` λx.M : (B1| . . . |Bm|o) Σ ` N1 . . . Σ ` Nl l = |B1|

Σ ` (λx.M)N1 . . . Nl

(app),

in which case n ≤ |B1| = l;

– or the rule (app+):

Σ ` λx.M : (B1| . . . |Bm|o) Σ ` N1 . . . Σ ` Nl l < |B1|

Σ ` (λx.L)N1 . . . Nl

(app+),

in which case n ≤ |B1| and no relation holds between n and l.

It is not required to have n = |B1|.

Note that there are safe terms of the form (λx1 . . . xn.M)N1 . . . Nl with l > n. For instance
the term (λf.((λgh.h)a))aa of type o → o for some constant a : o → o and variables x : o and
f, g, h : o→ o, can be formed using the (app) rule as follows:

∅ ` (λf.((λgh.h)a)) : (o, o), (o, o), o, o ∅ ` a : o, o ∅ ` a : o, o

∅ ` (λf.((λgh.h)a))aa : o, o
(app)

Definition 2.1.9 (Safe reduction βs). For the sake of concision, the following abbreviations are
used x = x1 . . . xn, N = N1 . . .Nl, and when n ≥ l, xL = x1 . . . xl, xR = xl+1 . . . xn.

• The relation βs is defined on the set of safe redex as follows:

βs = { (λx : A.T)N1 . . . Nl 7→ λxR.T
[
N/xL

]

where (λx : A.T)N1 . . .Nl is a safe redex such that n > l}

∪ { (λx : A.T)N1 . . . Nl 7→ T
[
N/x

]
Nn+1 . . . Nl

where (λx : A.T)N1 . . .Nl is a safe redex such that n ≤ l}

where the notation
[
N/x

]
denotes the capture-permitting simultaneous substitution.

2.1. Homogeneous Safe λ-Calculus 55

• The safe β-reduction, written →βs
, is the closure of the relation βs by compatibility with

the formation rules of the safe λ-calculus.

We observe that safe β-reduction is a certain kind of multi-steps β-reduction.

Property 2.1.10. →βs
⊂�β, i.e. the safe β-reduction relation is included in the transitive closure

of the β-reduction relation.

Proof. Suppose that (M 7→ N) ∈ βs. We show that M →∗
β N .

• Suppose that the safe-redex is M ≡ (λx : A.T)N1 . . .Nl such that n ≤ l then:

M =α (λz1 . . . zn.T [z1, . . . zn/x1, . . . xn]) N1N2 . . .Nl

where the zi are fresh variables

→β (λz2 . . . zn.T [z1, . . . zn/x1, . . . xn] [N1/z1]) N2 . . . Nl

(because the zis do not occur freely in N1)

→β . . .

→β (T [z1, . . . zn/x1, . . . xn] [N1/z1] . . . [Nn/zn]) Nn+1 . . . Nl

→β (T [N1 . . . Nl/x1, . . . xl]) Nn+1 . . .Nl,

and since T is safe, the substitution T [N1 . . .Nl/x1, . . . xl] in the last equation can be per-
formed using the capture-permitting substitution. Hence M →∗

β N .

• Suppose that M ≡ (λx : A.T)N1 . . . Nl such that n > l, then necessarily the redex must be
formed using the (app+) rule. The side-condition of this rules says that the free variables of
the terms N1, . . .Nl have all order strictly greater than ord(x), hence the xis do not occur
freely in N1, . . .Nl. Therefore:

M = (λx1 . . . xn.T) N1N2 . . .Nl

→β (λx2 . . . xn.T [N1/x1]) N2 . . . Nl

(for i ∈ 2..n, xi does not occur freely in N1)

→β . . .

→β λxl+1 . . . xn.T [N1/x1] . . . [Nl/xl]

(for i ∈ (l + 1)..n, xi does not occur freely in Nl)

→β λxl+1 . . . xn.T [N1 . . . , Nl/ x1, . . . , xl]

(the xi do not occur freely in N1, . . . Nl),

and since T is safe, the substitution T [N1 . . .Nl/x1, . . . xl] in the last equation can be per-
formed using the capture-permitting substitution. Hence M →∗

β N .

Property 2.1.11. In the simply-typed λ-calculus:

1. →βs
is strongly normalizing.

2. βs has the unique normal form property.

3. βs has the Church-Rosser property.

Proof. 1. This is because →βs
⊂�β and, →β is strongly normalizing in the simply-typed λ-

calculus. 2. A term has a safe redex iff it has a β-redex therefore the set of βs normal forms is
equal to the set of βs normal forms. Hence, the unicity of β-normal form implies the unicity of
βs-normal form. 3. is a consequence of 1 and 2.

56 Chapter 2. Safe λ-Calculus

Capture-permitting simultaneous substitution preserves safety (lemma 2.1.6), consequently any
safe redex reduces to a safe term:

Lemma 2.1.12 (The safe reduction βs preserves safety). If M is safe and M →βs
N then N is

safe.

Proof. It suffices to show that the relation βs preserves safety. Consider the safe-redex (s 7→ t) ∈ βs

where s ≡ (λx1 . . . xn.M)N1 . . . Nl . We proceed by case analysis on the last rule used to form the
redex.

• Suppose the last rule used is (app), then necessarily n ≤ l and the reduction is

(λx1 . . . xn.M)N1 . . .Nl 7→ t ≡M [N1/x1, · · · , Nn/xn] Nn+1 . . . Nl.

The first premise of the rule (app) tells us that M is safe therefore using lemma 2.1.6 and
the application rule we obtain that t is safe.

• Suppose the last rule used is (app+) and n > l then the reduction is

(λxL : AL xR : AR.T)NL 7→ t ≡ λxR : AR.T
[
xL/NL

]
.

By lemma 2.1.6, T
[
xL/NL

]
is a safe term. Using the rule (abs) we derive that t is safe.

• Suppose the last rule used is (app+) and n ≤ l then the reduction is

(λx1 . . . xn.M)N1 . . . Nl 7→ t ≡M [N1/x1, · · · , Nn/xn] Nn+1 . . .Nl

We conclude that t is safe similarly to case (app).

• Rule (wk) (seq): these cases reduce to one of the previous cases.

Remark 2.1.13. →βs
does not preserves un-safety: given two terms S safe and U unsafe of the

same type, the term (λxy.y)US is also unsafe but it βs-reduces to S which is safe.

2.1.5 An alternative system of rules

In this section, we will refine the formation rules given in the previous section. We say that
Γ ` M : A satisfies Pi for i ∈ Z if the variables in Γ all have orders at least ord(A) + i. We
introduce the notation Γ `i M : A for i ∈ Z to mean that Γ `M : A is a valid judgment satisfying
Pi.

We remark that if Γ ` M : A then the variables in Γ with order strictly smaller than M
cannot occur freely in M and therefore it is possible to restrict the context to a smaller number
of variables:

Lemma 2.1.14 (Context reduction). If Γ `i M : A then Γ′ `0 M : A where

Γ′ = {z ∈ Γ | ord(z) ≥ ord(M)} = Γ \ {z ∈ Γ | ord(M) + i ≤ ord(z) < ord(M)}

Proof. If i ≥ 0 then the result is trivial. Suppose i < 0. We proceed by structural induction and
case analysis. We only give the details for the application cases (app) and (app+):

• Case of the rule (app):

(app)
Γ `M : (B1 | · · · |Bm | o) Γ ` N1 : B11 · · · Γ ` Nl : B1l l = |B1|

Γ `MN1 · · ·Nl : (B2 | · · · |Bm | o)

2.1. Homogeneous Safe λ-Calculus 57

If the conclusion satisfies Pi then, for all z ∈ Γ:

ord(z) ≥ 1 + ord(B2) + i = 1 + ord(B1) + ord(B2) − ord(B1) + i

= ord(M) + (ord(B2) − ord(B1) + i)

Therefore the first premise satisfies Pj where j = ord(B2) − ord(B1) + i. Hence by the
induction hypothesis,

Γ′ `0 M : (B1 | · · · |Bm | o)

where Γ′ = Γ \ {z ∈ Γ | ord(M) + j ≤ ord(z) < ord(M)}.

Similarly, for all z ∈ Σ:

ord(z) ≥ 1 + ord(B2) + i = ord(B1) + (1 + ord(B2) − ord(B1) + i)

= ord(B1) + j + 1

Hence by the induction hypothesis:

Γ′′ `0 Nk : B1k for k ∈ 1..l

where Γ′′ = Γ \ {z ∈ Γ | ord(M) + j + 1 ≤ ord(z) < ord(M)}.

Furthermore, Γ′′ = Γ′ ∪ {z ∈ Γ | ord(M) + j = ord(z)} therefore the weakening rule gives:

Γ′′ `−1 M : (B1 | · · · |Bm | o)

Finally the (app) rule gives:

Γ′′ `−1 M : (B1 | · · · |Bm | o) Γ′′ `0 N1 : B11 . . . Γ′′ `0 N1 : B1l

Γ′′ `MN1 . . .Nl : (B2 | · · · |Bm | o)

such that for all z ∈ Γ′′:

ord(z) ≥ ord(B1) ≥ 1 + ord(B2) = ord(MN1 . . . Nl)

Therefore:
Γ′′ `0 MN1 . . . Nl : (B2 | · · · |Bm | o)

• (app+) The side-condition of the rule (app+) ensures that the first premise satisfies P0.
The conclusion of the rule has the same order as the first premise therefore the conclusion
also satisfies P0.

Lemma 2.1.15. If Γ `0 M : T or Γ `−1 M : T then there is a valid proof tree showing Γ `M : T
such that all the judgments appearing in the proof tree satisfy either P0 or P−1.

Proof. Since P−1 implies P0, w.l.o.g. we can assume that the judgment Γ ` M : T satisfies P−1.
We show that there is a proof tree for Γ `M : T where all the nodes of the tree satisfy P0 or P−1.
We proceed by structural induction and case analysis on the last rule used to show Γ `M : T :

• Axiom (Σ-const): the context is empty therefore the sequent satisfies P−1.

• Axiom (var): the context contains only the variable itself therefore the sequent satisfies P0.

• Rule (wk): The premise is ∆ ` M : T with ∆ ⊂ Γ. Since Γ ` M : T satisfies P−1 and
∆ ⊂ Γ the premise must also satisfy P−1. We can conclude using the induction hypothesis.

• Rule (perm): By the induction hypothesis.

58 Chapter 2. Safe λ-Calculus

• Rule (abs): the second premise of the rule guarantees that the first premise satisfies P−1.

• Rule (app+): The first premise has the same order as the conclusion of the rule therefore
the first premise satisfies P0. The side-condition of the rule (app+) ensures that all the
other premises satisfy P0.

• Rule (app):

(app)
Γ `M : (A |B) Γ ` N1 : A1 · · · Γ ` Nl : Al l = |A|

Γ `0 MN1 · · ·Nl : B

Applying lemma 2.1.14 to the first premise we obtain:

Σ `0 M : (A |B) (2.1)

where Σ = {z ∈ Γ | ord(z) ≥ ord((A |B))} = {z ∈ Γ | ord(z) ≥ 1 + ord(A)}.

Applying lemma 2.1.14 to each of the remaining premises gives :

Σ′ `0 Ni : Ai for all i ∈ 1..p

where Σ′ = {z ∈ Γ | ord(z) ≥ ord(Ai) = ord(A)} ⊇ Σ.

If the inclusion Σ ⊆ Σ′ is strict then we apply the weakening rule to sequent (2.1):

Σ `0 M : (A |B)

Σ′ `−1 M : (A |B)
(wk)

Finally, we obtain the following proof tree:

Σ′ `−1 M : (A |B) Σ′ `0 N1 : A1 · · · Σ′ `0 Nl : Al l = |A|

Σ′ `0 MN1 · · ·Nl : B
(app)

Γ `0 MN1 · · ·Nl : B
(wk)

where the last weakening rules is applied only if the inclusion Σ′ ⊆ Γ is strict.

We can now conclude by applying the induction hypothesis on the sequents Σ′ `−1 M ,
Σ′ `0 N1, . . . , Σ′ `0 Nl .

An Alternative Definition of the Homogeneous Safe λ-Calculus

Using the observations that we have just made, we will now derive new rules for the safe λ-calculus
with homogeneous type. We want a system of rules generating sequents that satisfy P0. Also, it
must be able to generate intermediate sequents that do not necessarily satisfy P0 provided that
they can be used to produce in fine terms satisfying P0.

Because of the lemma 2.1.15, we know that the only necessary intermediate sequents are those
that either satisfy P0 or P−1. Hence, we can assume by default that premises of the rules all
satisfy P−1 at least.

First we define an additional rule expressing the fact that P0 implies P−1:

(seq)
Γ `0 M : A

Γ `−1 M : A

The weakening rule can be rewritten as follows:

(wk0)
Γ `0 M : A

Γ, x : B `0 M : A
ord(B) ≥ ord(A)

2.1. Homogeneous Safe λ-Calculus 59

(wk−1)
Γ `−1 M : A

Γ, x : B `−1 M : A
ord(B) ≥ ord(A) − 1

Because of the context reduction lemma, any sequent satisfying P−1 can be obtained by ap-
plying the weakening rule (wk−1) or the rule (seq) to another sequent satisfying P0. Therefore,
with the exception of these two rules, we only need to use rules whose conclusion sequents satisfy
P0:

• For the rules (perm), (const) and (var), only the tagging of the sequents changes:

(var)
x : A `0 x : A

(Σ-const)
`0 b : A

b : A ∈ Σ

(perm)
Γ `0 M : B σ(Γ) homogeneous

σ(Γ) `0 M : B

• (abs) The abstraction rule has a side condition expressing the fact that the premise satisfies
P0 or P−1. Since this is always true for sequents generated by our new system of rules, we
can drop the side condition:

(abs)
Γ|x : A `−1 M : B

Γ `0 λx : A.M : (A,B)

• (app) The application rule has the following form:

(app)
Γ `−1 M : (A |B) Γ `−1 N1 : A1 · · · Γ `−1 Nl : Al l = |A|

Γ `0 MN1 · · ·Nl : B

Since the first premise satisfies P−1, by property 2.1.4(ii) we have:

∀z ∈ Γ : ord(z) ≥ 1 + ord(A) − 1 = ord(A) = ord(N)

Hence, all the sequents of the premises but the first must satisfy P0. The rule (app) is
therefore given by:

(app)
Γ `−1 M : (A |B) Γ `0 N1 : A1 · · · Γ `0 Nl : Al l = |A|

Γ `0 MN1 · · ·Nl : B

• For the application rule (app+), the type of the sequent in the first premise has the same
order as the type of the conclusion premise, and since the conclusion satisfies P0, the first
premise must also satisfy P0. The side-condition implies that all the other sequents in the
premise satisfy P0. Moreover since the first premise satisfies P0, the side-condition must
hold. Hence the rule becomes:

(app+)
Γ `0 M : (B1 | · · · |Bm | o) Γ `0 N1 : B11 · · · Γ `0 Nl : B1l l < |B1|

Γ `0 MN1 · · ·Nl : (B | · · · |Bm | o)

where B1 = B11, . . . , B1l, B. Clearly, this rule can be equivalently stated as:

Γ `0 M : A→ B Γ `0 N : A

Γ `0 MN : B

The full set of rules is given in table 2.1.

60 Chapter 2. Safe λ-Calculus

(perm)
Γ `0 M : B σ(Γ) homogeneous

σ(Γ) `0 M : B
(seq)

Γ `0 M : A

Γ `−1 M : A

(Σ-const)
`0 b : A

b : A ∈ Σ (var)
x : A `0 x : A

(wk0)
Γ `0 M : A

Γ, x : B `0 M : A
ord(B) ≥ ord(A)

(wk−1)
Γ `−1 M : A

Γ, x : B `−1 M : A
ord(B) ≥ ord(A) − 1

(app)
Γ `−1 M : (A |B) Γ `0 N1 : A1 · · · Γ `0 Nl : Al l = |A|

Γ `0 MN1 · · ·Nl : B

(app+)
Γ `0 M : A→ B Γ `0 N : A

Γ `0 MN : B

(abs)
Γ|x : A `−1 M : B

Γ `0 λx : A.M : (A|B)

where Γ|x : A means that the lowest type-partition of the context is x : A.

Tab. 2.1: Alternative rules for the homogeneous safe lambda calculus

2.2. Safe λ-Calculus without the Homogeneity Constraint 61

2.2 Safe λ-Calculus without the Homogeneity Constraint

In section 2.1, we have presented a version of the safe lambda calculus where types are required to
be homogeneous. We now give a more general version of the safe simply-typed λ-calculus where
type homogeneity is not required.

2.2.1 Rules

We use a set of sequents of the form Γ ` M : A where Γ is the context of the term and A is its
type. Let Σ be a set of higher-order constants. We call safe terms any simply-typed lambda term
that is typable within the following system of formation rules:

(var)
x : A ` x : A

(const)
` f : A

f ∈ Σ (wk)
Γ `M : A

∆ `M : A
Γ ⊂ ∆

(app)
Γ `M : (A, . . . , Al, B) Γ ` N1 : A1 . . . Γ ` Nl : Al

Γ `MN1 . . . Nl : B
∀y ∈ Γ : ord(y) ≥ ord(B)

(abs)
Γ ∪ x : A `M : B

Γ ` λx : A.M : (A,B)
∀y ∈ Γ : ord(y) ≥ ord(A,B)

Remark:

• (A,B) denotes the type (A1, A2, . . . , An, B);

• all the types appearing in the rule are not required to be homogeneous (for instance it is
possible to have ord(Al) < ord(B) in rule (app)) ;

• the environment Γ ∪ x : A is not stratified, in particular, variables in x do not necessarily
have the same order;

• in the abstraction rule, the side-condition imposes that at least all variables of the lowest
order in the context are abstracted. Variables of greater order can also be abstracted together
with the lowest order variables and, in contrast to the homogeneous safe lambda calculus,
there is no constraint on the order in which these variables are abstracted;

Example 2.2.1. For x : o, f : (o, o) and ϕ : ((o, o), o) the term

` λxfϕ.ϕ : (o, (o, o), ((o, o), o), (o, o), o)

is a valid safe term that is not homogeneously typed.

Example 2.2.2. For x : o, g : (o, (o, o), o), the term ` λgx.gx is unsafe and not homogeneously
typed and the term λgx.gx(λx.x) is safe and not homogeneously typed.

Side-remark: safety is preserved by full η-expansion. Indeed, consider the safe term Γ `
M : (A1, . . . , Al, o) where (A1, . . . , Al, o) is not necessarily homogeneous. Its full η-expansion is
λx1..xl.Mx1 . . . xl for some variables x1 : A1, . . . , xl : Al fresh in M . For all i ∈ 1..l we have
Γ,Σ ` xi : Ai where Σ = {x1 : A1, · · ·xl : Al}. Applying (app) we obtain Γ,Σ ` Mx1 . . . xl and
by the (abs) rule we get

Γ ` λx1 : A1 . . . xl : Al.Mx1 . . . xl.

Lemma 2.2.3 (Context reduction). If Γ `M : B is a valid judgment then

1. fv(M) `M : B

2. every variable in Γ occurring free in M has order at least ord(M).

where fv(M) denotes the context constituted of the free variables occurring in M .

62 Chapter 2. Safe λ-Calculus

Proof. (i) Suppose that some variable x in Γ does not occur free in M , then necessarily x has been
introduced in the context using the weakening rule. Hence Γ \ {x} `M must also be typable. (ii)
An easy structural induction.

The converse of this lemma is not true: consider the simply-typed term λyz.(λx.y)z with
x, y, z : o. This term is closed therefore it satisfies property (i) and (ii) of lemma 2.2.3. However
it is not typable by the rules of the safe lambda-calculus since the subterm λx.y is not safe.

2.2.2 Substitution in the safe lambda calculus

The traditional notion of substitution, on which the λ-calculus is based, is defined as follows:

Definition 2.2.4 (Substitution).

c [t/x] = c where c is a Σ-constant,

x [t/x] = t

y [t/x] = y for x 66= y,

(M1M2) [t/x] = (M1 [t/x])(M2 [t/x])

(λx.M) [t/x] = λx.M

(λy.M) [t/x] = λz.M [z/y] [t/x] where z is a fresh variable and x 6= y.

In the setting of the safe lambda calculus, the notion of substitution can be simplified. Indeed,
similarly to what we observe in the homogeneous safe λ-calculus, we remark that for safe λ-terms
there is no need to rename variables when performing substitution:

Lemma 2.2.5 (No variable capture lemma). There is no variable capture when performing sub-
stitution on a safe term.

This is the counterpart of lemma 2.1.7. The proof (which does not rely on homogeneity) is the
same. Consequently, in the safe lambda calculus setting, we can omit to rename variable when
performing substitution. The equation

(λx.M) [t/y] = λz.M [z/x] [t/y] where z is a fresh variable

becomes
(λx.M) [t/y] = λx.M [t/y] .

Unfortunately, this notion of substitution is still not adequate for the purpose of the safe
simply-typed lambda calculus. The problem is that performing a single β-reduction on a safe
term will not necessarily produce another safe term.

The solution consists in reducing several consecutive β-redex at the same time until we obtain
a safe term. To achieve this, we introduce the simultaneous substitution, a generalization of the
standard substitution given in definition 2.2.4.

Definition 2.2.6 (Simultaneous substitution). The expression
[
N/x

]
is an abbreviation for

[N1 . . . Nn/x1 . . . xn]:

c
[
N/x

]
= c where c is a Σ-constant,

xi

[
N/x

]
= Ni

y
[
N/x

]
= y if y 66= xi for all i,

(MN)
[
N/x

]
= (M

[
N/x

]
)(N

[
N/x

]
)

(λxi.M)
[
N/x

]
= λxi.M [N1 . . . Ni−1Ni+1 . . . Nn/x1 . . . xi−1xi+1 . . . xn]

(λy.M)
[
N/x

]
= λz.M [z/y]

[
N/x

]

where z is a fresh variables and y 6= xi for all i.

2.2. Safe λ-Calculus without the Homogeneity Constraint 63

In general, variable capture should be avoided, this explains why the definition of simultaneous
substitution uses auxiliary fresh variables. However in the current setting, lemma 2.2.5 can clearly
be transposed to the simultaneous substitution, therefore there is no need to rename variables.

The notion of substitution that we need is therefore the capture-permitting simultaneous sub-
stitution defined as follows:

Definition 2.2.7 (Capture-permitting simultaneous substitution). We use the notation
[
N/x

]

for [N1 . . . Nn/x1 . . . xn]:

c
[
N/x

]
= c where c is a Σ-constant,

xi

[
N/x

]
= Ni

y
[
N/x

]
= y where x 66= yi for all i,

(M1M2)
[
N/x

]
= (M1

[
N/x

]
)(M2

[
N/x

]
)

(λxi.M)
[
N/x

]
= λxi.M [N1 . . . Ni−1Ni+1 . . . Nn/x1 . . . xi−1xi+1 . . . xn]

(λy.M)
[
N/x

]
= λy.M

[
N/x

]
where y 6= xi for all i. (?)

The symbol (?) identifies the equation which has changed compared to the previous definition.

Lemma 2.2.8 (Substitution preserves safety).

Γ ∪ x : A `M : T and Γ ` Nk : Bk, k ∈ 1..n implies Γ `M [N/x] : T

Proof. Suppose that Γ ∪ x : A `M : T and Γ ` Nk : Bk for k ∈ 1..n.
We prove Γ ` M [N/x] by induction on the size of the proof tree of Γ ∪ x : A ` M : T

and by case analysis on the last rule used. We only give the proof for the abstraction case. If
Γ ∪ x : A ` λy : C.P : (C|D) where Γ ∪ x : A ∪ y : C ` P : D, then by the induction hypothesis
Γ ∪ y : C ` P

[
N/x

]
: D. Applying the rule (abs) gives Γ ` λy : C.P

[
N/x

]
.

2.2.3 Safe-redex

In the simply-typed lambda calculus a redex is a term of the form (λx.M)N . We generalize this
definition to the safe lambda calculus:

Definition 2.2.9 (Safe redex). We call safe redex a term of the form (λx.M)N1 . . . Nl such that:

• Γ ` (λx.M)N1 . . . Nl;

• the variable x = x1 . . . xn are abstracted altogether by one occurrence of the rule (abs) in
the proof tree;

• the terms (λx.M), N1, Nl are applied together at once using the (app) rule :

Σ ` λx.M Σ ` N1 . . . Σ ` Nl

Σ ` (λx.L)N1 . . .Nl

(app)

and consequently each Ni is safe;

The relation βs is defined exactly the same way as in the homogeneous safe λ-calculus. The
safe β-reduction →βs

is defined as the closure of βs by compatibility with the formation rules of
the safe λ-calculus. It is straightforward to show, as we did for the homogeneous safe λ-calculus,
that →βs

⊂�β.

Lemma 2.2.10. A safe redex reduces to a safe term.

This lemma, which is a consequence of lemma 2.2.8, is the counterpart of lemma 2.1.12 in the
homogeneous safe lambda calculus. Their proofs are identical.

64 Chapter 2. Safe λ-Calculus

2.2.4 Particular case of homogeneously-safe lambda terms

In this section, we derive a new set of rules by adding the type-homogeneity restriction to the
non-homogenous safe lambda calculus.

We recall the definition of type-homogeneity from section 2.1: a type (A1, A2, . . . An, o) is
said to be homogeneous whenever ord(A1) ≥ ord(A2) ≥ . . . ≥ ord(An) and each of the Ai is
homogeneous. A term is said to be homogeneous if its type is homogeneous.

We now impose type-homogeneity to all the sequents present in the rules of the safe λ-calculus:
we say that a term is homogeneously-safe if there is a proof tree showing its safety in which all
sequents are of homogenous type. Consequently a homogeneously-safe term is safe and has an
homogenous type.

We say that Γ `M : A verifies Pi for i ∈ Z if all the variables in Γ have order at least ord(A)+i.
Lemma 2.2.3 can then be restated as follows:

Lemma 2.2.11 (Context reduction). If Γ `M : A then the sequent fv(M) `M : A is valid and
satisfies P0.

We now prove that if we impose the homogeneity of types, the set of rules of the non-
homogenous safe λ-calculus and the rules of table 2.1 are equivalent. We recall that in the system
of rules of table 2.1, if the sequent Γ `i M : A is valid for some i ∈ Z then all the variables in Γ
have orders at least ord(A) + i.

Proposition 2.2.12 (Homogeneity restriction). Let k ∈ {0,−1}. The sequent Γ `M : A is valid,
homogeneously-safe and satisfies Pk if and only if the sequent Γ `k M : A is valid in the system
of rules of table 2.1.

Proof. If : An easy induction by case analysis on the last rule used to derive Γ `0 M : A.
Only if : Consider an homogeneously-safe term Γ ` S : T satisfying P0. We proceed by

induction and case analysis on the last rule used to derive Γ ` S : T . We only give the details for
the application and abstraction case:

• Abstraction. We recall the abstraction rule:

(abs)
Γ ∪ x : A `M : B

Γ ` λx : A.M : (A,B)
∀y ∈ Γ : ord(y) ≥ ord(A,B)

Type homogeneity requires that for all i: ord(xi) = ord(Ai) ≥ ord(B) − 1. Therefore the
premise of the rule verifies P−1. Using the induction hypothesis we have:

Γ ∪ x : A `−1 M : B. (2.2)

We now partition the context Γ according to the order of the variables. The partitions are
written in decreasing order of type order. The notation Γ|x : A means that x : A is the
lowest partition of the context. We also use the notation (A|B) to denote the homogeneous
type (A1, A2, . . . An, B) where ord(A1) = ord(A2) = . . . ord(An) ≥ ord(B) − 1.

Suppose that we abstract a single variable x, then in order to respect the side condition,
we need to abstract all variables of order less or equal to ord(x). In particular we need to
abstract the partition of the order of x. Moreover to respect type homogeneity, we need to
abstract variables of the lowest order first.

Hence x must contain at least the lowest variable partition (all the variables of the lowest
order). If x contains variables of different order, then the instance of the abstraction rule
can be replaced by consecutive instances of the abstraction rule, one for each of the different
variable order in x. Therefore, without loss of generality, we can assume that x only contains
the lowest partition, that is to say, x is the lowest partition.

The sequent 2.2 therefore becomes:

Γ|x : A `−1 M : B.

2.2. Safe λ-Calculus without the Homogeneity Constraint 65

We conclude by applying the abstraction rule of table 2.1:

(abs)
Γ|x : A `−1 M : B

Γ `0 λx : A.M : (A|B)

• Application. We recall the application rule:

(app)
Γ `M : (A, . . . , Al, B) Γ ` N1 : A1 . . . Γ ` Nl : Al

Γ `MN1 . . . Nl : B
∀y ∈ Γ : ord(y) ≥ ord(B)

The term in the conclusion is homogeneously safe therefore the term in the first premise
must be of homogeneous type. This implies that ord(A1) ≥ . . . ≥ ord(Al) ≥ ord(B) − 1.
Furthermore, we can make the assumption that ord(A1) = . . . = ord(Al) = ord(A) (it is
always possible to replace an instance of the application rule by several consecutive instances
of this kind).

By lemma 2.2.11, we have for all i ∈ 1..l:

fv(Ni) ` Ni : Ai is valid and satisfies P0.

Let Σ =
⋃

i=1..p fv(Ni). Since ord(A1) = . . . = ord(Al), by applying the weakening rule we
get for all i ∈ 1..p:

Σ ` Ni : Ai is valid and satisfies P0.

Applying lemma 2.2.11 to the term M we have:

fv(M) `M : (A1, . . . , Al, B) is valid and satisfies P0.

The weakening rule (wk) then gives: fv(M) ∪ Σ ` M : (A1, . . . , Al, B). Since Σ ` Ni : Ai

satisfies P0, for any z ∈ Σ we have ord(z) ≥ ord(Ai) = ord((A1, . . . , Al, B)) − 1. Hence:

fv(M) ∪ Σ `M : (A1, . . . , Al, B) is valid and satisfies P−1. (2.3)

Similarly, for all i ∈ 1..p, the weakening rule gives fv(M)∪Σ ` Ni : Ai. Since fv(M) `M :
(A1, . . . , Al, B) satisfies P0, for any z ∈ fv(M) we have ord(z) ≥ ord(M) ≥ ord(Ai). Hence:

fv(M) ∪ Σ ` Ni : Ai is valid and satisfies P0. (2.4)

Let us define the context Σ′ = fv(M) ∪ Σ. Using the induction hypothesis on equation 2.3
and 2.4 we have:

Σ′ `−1 M : (A1, . . . , Al, B) and Σ′ `0 Ni : Ai for all i ∈ 1..l.

We consider the following two sub-cases:

– If A1, . . . , Al forms a type partition then we can apply rule (app) of table 2.1:

Σ′ `−1 M : A|B Σ′ `0 N1 : A1 . . . Σ′ `0 Nl : Al l = |A|

Σ′ `0 MN1 . . . Nl : B
(app)

where A = A1, . . . , Al.

– Suppose that A1, . . . , Al does not form a type partition, then we have

ord(A1) = . . . = ord(Al) = ord(B) − 1.

66 Chapter 2. Safe λ-Calculus

The side condition in the original instance of the application rule says that for any
variable y in Γ we have

ord(y) ≥ ord(B) = 1 + ord(Al) = ord((A1, . . . , Al, B)) = ord(M).

In particular the variables in Σ′ ⊆ Γ are of order greater than ord(M) and consequently
the sequent Σ′ `M : (A, . . . , Al, B) verifies P0. The induction hypothesis then gives:

Σ′ `0 M : (A, . . . , Al, B)

By using l consecutive instances of the rules (app+) from table 2.1 we get:

Σ′ `0 M : (A1, . . . , Al, B) Σ′ `0 N1 : A1

Σ′ `0 MN1 : (A2, . . . , Al, B)
(app+)

...

(app+)

Σ′ `0 MN1 . . .Nl : B
(app+)

In both cases we have proved that Σ′ `0 MN1 . . . Nl : B is a valid sequent.

Clearly Σ′ ⊆ Γ since fv(M) ⊆ Γ and Σ′ =
⋃

i∈1..l fv(Ni) ⊆ Γ. Suppose that Σ′ = Γ then
the proof is done. Suppose that Σ′ ⊂ Γ, then the side condition in the original instance of
the application rule says that all the variables in Γ have order greater or equal to ord(B),
we can therefore apply the weakening rule (wk0) of table 2.1 exactly |Γ \Σ′| times and get:

Σ′ `0 MN1 . . . Nl : B

Γ `0 MN1 . . . Nl : B
(wk0).

2.2.5 Examples

Example 1

Let f, g : o→ o, x, y : o→ o, Γ = g : o→ o and Γ′ = g : o→ o, y : o. The term (λfx.x)gy is safe.
One possible proof tree is:

...

Γ ` λfx.x Γ ` g
Γ ` (λfx.x)g

(app)

Γ′ ` (λfx.x)g
(wk)

Γ′ ` y

Γ′ ` (λfx.x)gy
(app)

Here is another proof for the same judgment:

...

Γ ` λfx.x
Γ′ ` λfx.x

(wk)
Γ′ ` g Γ′ ` y

Γ′ ` (λfx.x)gy
(app)

We see on this particular example that there may exist different proof trees deriving the same
judgment.

2.2. Safe λ-Calculus without the Homogeneity Constraint 67

Example 2 - Damien Sereni’s SCT counter-example

In [60], the following counter-example is given to show that not all simply-typed terms are size-
change terminating (see [37] for a definition of size-change termination):

E = (λa.a(λb.a(λcd.d)))(λe.e(λf.f))

where:

a : σ → µ→ µ

b : τ → τ

c : τ → τ

d : µ

e : σ = (τ → τ) → µ→ µ

f : τ

and τ , µ and σ are type variables.
This example shows that the rules of the safe λ-calculus without the homogeneity restriction

generates a class of terms that strictly contains the class of terms generated by the rules of the
homogeneous safe λ-calculus of section 2.1.

Indeed, for E to be an homogeneous safe lambda term, in the sense of the rules of section 2.1,
τ and µ must be homogeneous types and the variables a, b, c, d, e, f must be homogeneously typed.
This implies that ord(τ) ≥ ord(µ) − 1. Conversely, if this condition is met then ` E : µ → µ is a
valid judgement of the homogeneous safe λ-calculus.

In the safe λ-calculus without the homogeneity constraint, however, the judgement ` E : µ→ µ
is always valid whatever the types µ and τ are.

68 Chapter 2. Safe λ-Calculus

Chapter 3

COMPUTATION TREES, TRAVERSALS AND

GAME SEMANTICS

The aim of this chapter is to develop tools that will be used in the next chapter to give a char-
acterisation of the game semantics of the safe λ-calculus. Establishing such a characterisation is
complicated by the fact that Safety is a syntactic restriction whereas Game Semantics is by nature
a syntax-independent semantics. We therefore need to make an explicit correspondence between
the game denotation of a term and its syntax. Our approach follows ideas recently introduced
in [52], mainly the notion of computation tree of a simply-typed λ-term and traversals over the
computation tree. A computation tree can be regarded as an abstract syntax tree (AST) of the
η-long normal form of a term. A traversal is a justified sequence of nodes of the computation tree
respecting some formation rules. Traversals are used to describe computations. An interesting
property is that the P-view of a traversal (computed in the same way as P-view of plays in Game
Semantics) is a path in the computation tree.

The main result that we will prove in this chapter is called the Correspondence Theorem
(theorem 3.2.24). It states that traversals over the computation tree are just representations of
the uncovering of plays in the strategy-denotation of the term. Hence there is an isomorphism
between the strategy denotation of a term and its revealed game denotation (i.e. its strategy
denotation where internal moves are not hidden after composition). This theorem permits us to
explore the effect that a given syntactic restriction has on the strategy denotating a term.

To really make use of the Correspondence Theorem, it will be necessary to restate it in the
standard game-semantic framework in which internal moves are hidden. For that purpose, we will
define a reduction operation on traversals responsible of eliminating the “internal nodes” of the
computation. This leads to a correspondence between the standard game denotation of a term and
the set of reductions of traversals over its computation tree. Fortunately, the reduction process
preserves the good properties of traversals. This is guaranteed by the facts that the P-view of the
reduction of a traversal is equal to the reduction of the P-view of the traversal, and the O-view of
a traversal is the same as the O-view of its reduction (lemma 3.1.23).

Related works : Traversals of a computation tree provide a way to perform local computation of
β-reductions as opposed to a global approach where the β-reduction is implemented by performing
substitutions. A notion of local computation of β-reduction has been investigated in [20] through
the use of special graphs called “virtual nets” that embed the lambda-calculus.

In [13], a notion of graph based on Lamping’s graphs [36] is introduced to represent λ-terms.
The authors unify different notions of paths (regular, legal, consistent and persistent paths) that
have appeared in the literature as ways to implement graph-based reduction of lambda-expressions.
We can regard a traversal as an alternative notion of path adapted to the graph representation of
λ-expressions given by computation trees.

3.1 Computation tree

We work in the general setting of the simply-typed λ-calculus extended with a fixed set Σ of
higher-order constants.

70 Chapter 3. Computation trees, traversals and game semantics

3.1.1 η-long normal form

The η-long normal form appeared in [32] and [28] under the names long reduced form and η-normal
form respectively. It was then investigated in [29] under the name extensional form.

The η-expansion of M : A→ B is defined to be the term λx.Mx : A→ B where x : A is a fresh
variable. A term M : (A1, . . . , An, o) can be expanded in several steps into λϕ1 . . . ϕl.Mϕ1 . . . ϕl

where the ϕi : Ai are fresh variables. The η-normal form of a term is obtained by hereditarily
η-expanding every subterm occurring at an operand position.

Definition 3.1.1 (η-long normal form). A simply-typed term is either an abstraction or it can be
written uniquely as s0s1 . . . sm where m ≥ 0 and s0 is a variable, a Σ-constant or an abstraction.
The η-long normal form of a term t, written dte or sometimes ηnf(t), is defined as follows:

dλx.se = λx.dse

dαs1 . . . sm : (A1, . . . , An, o)e = λϕ.αds1e . . . dsmedϕ1e . . . dϕne with m,n ≥ 0

d(λx.s)s1 . . . sp : (A1, . . . , An, o)e = λϕ.(λx.dse)ds1e . . . dspedϕ1e . . . dϕne with p ≥ 1, n ≥ 0

where x and each ϕi : Ai are variables and α is either a variable or a constant.

For n = 0, the first clause in the definition becomes:

dxs1 . . . sm : oe = λ.xds1eds2e . . . dsme,

and we deliberately keep the dummy lambda in the right-hand side of the equation because it will
play an important role in the correspondence with game semantics.

Note that our version of the η-long normal form is defined not only for β-normal terms but also
for any simply-typed term. Moreover it is defined in such a way that β-normality is preserved:

Lemma 3.1.2. The η-long normal form of a term in β-normal form is also in β-normal form.

Proof. By induction on the structure of the term and the order of its type. Base case: If M = x : 0
then dxe = λ.x is also in β-nf. Step case: The case M = (λx.s)s1 . . . sm : (A1, . . . , An, o) with
m > 0 is not possible since M is in β-normal form. Suppose M = λx.s then s is in β-nf. By the
induction hypothesis dse is also in β-nf and therefore so is dMe = λx.dse.

SupposeM = αs1 . . . sm : (A1, . . . , An, o). Let i, j range over 1..n and 1..m respectively. The sj

are in β-nf and the ϕi are variables of order smaller than M , therefore by the induction hypothesis
the dϕie and the dsje are in β-nf. Hence dMe is also in β-nf.

Lemma 3.1.3 (η-long normalisation preserves safety). If Γ ` s then Γ ` dse.

Proof. First we observe that for any variable or constant x we have x ` dxe. The proof is by
induction on ord(x). Base case: x is of ground type and we have x ` x = dxe. Step case:
x : (A1, . . . , An, o) with n > 0. Let ϕi : Ai be fresh variables for 1 ≤ i ≤ n. The (var) rules
gives ϕi ` ϕi and since ord(Ai) < ord(x) the induction hypothesis gives ϕi ` dϕie. Using (wk) we
obtain x, ϕ ` dϕie. The application rule gives x, ϕ ` xdϕ1e . . . dϕne : o and the abstraction rule
gives x ` λϕ.xdϕ1e . . . dϕne = dxe.

We now prove the lemma by induction on the structure of s. The base case (where s is some
variable x) is covered by the previous observation. Step case:

• s = xs1 . . . sm with x : (B1, . . . , Bm, A1, . . . , An, o) with m ≥ 0, n > 0 and si : Bi for
1 ≤ i ≤ m.

Let ϕi : Ai be fresh variables for 1 ≤ i ≤ n. By the previous observation we have ϕi ` dϕie
which in turn gives Γ, ϕ ` dϕie using the weakening rule.

The judgement Γ ` xs1 . . . sm is formed using the (app) rule therefore each sj is safe for
1 ≤ j ≤ m. By the induction hypothesis we have Γ ` dsje and by weakening we get
Γ, ϕ ` dsje.

The application rule gives Γ, ϕ ` xds1e . . . dsmedϕ1e . . . dϕne : o. Finally the (abs) rule
gives Γ ` λϕ.xds1e . . . dsmedϕ1e . . . dϕne = dse, the side-condition of (abs) being met since
ord(dse) = ord(s).

3.1. Computation tree 71

• s = ts0 . . . sm where t is an abstraction. Again, using the induction hypothesis it is easy to
show that Γ ` dse = dteds0e . . . dsmedϕ1e . . . dϕne holds for some fresh variables ϕ1, . . . , ϕn.

• s = λη.t where t is not an abstraction. By the induction hypothesis we have Γ, η ` dte and
by the abstraction rule we have Γ ` λη.dte = dse.

Note that in general the converse does not hold, for instance λxo.fo,(o,o),oxo is unsafe although
dλx.fxe = λxoϕo,o.fxϕ is safe (and not homogeneous). For terms with homogeneous types how-
ever, the converse does hold:

Lemma 3.1.4. If Γ ` dse is homogeneously safe (i.e. it is a safe judgement of the safe λ-calculus
and each sequent occurring at the nodes of the proof tree is homogeneously typed) then Γ ` s is
homogeneously safe.

3.1.2 Computation tree

The computation tree of a term is a certain tree representation of its η-long normal form. It is
defined as follows:

Definition 3.1.5 (Computation tree). For any term M in η-normal form we define the tree τ(M)
by induction on the structure of the term. Since M is in η-normal form, there are only two cases:
M is either an abstraction or it is of ground type and can be written uniquely as s0s1 . . . sm : 0
where m ≥ 0, s0 is a variable, a constant or an abstraction and each of the sj for j ∈ 1..m is in
η-normal form:

• the tree for λx1 . . . xn.s where n ≥ 0 and s is not an abstraction is:

τ(λx1 . . . xn.s) = λx1 . . . xn

τ(s)−

where τ(s)− denotes the tree obtained after deleting the root of τ(s).

• the tree for αs1 . . . sm : o where m ≥ 0 and α is a variable or constant is:

τ(αs1 . . . sm) = λ

α

τ(s1)

. . .

τ(sm)

• the tree for (λx.s)s1 . . . sn : o where n ≥ 1 is:

τ((λx.s)s1 . . . sn) = λ

@

τ(λx.s) τ(s1)

. . .

τ(sn)

The computation tree of a simply-typed term M (whether or not in η-normal form) is written
τ(M) and defined to be τ(M) = τ(ηnf(M)).

72 Chapter 3. Computation trees, traversals and game semantics

The nodes (and leaves) of the tree are of three kinds:

• λ-nodes labelled λx (note that a λ-node represents several consecutive variable abstractions),

• application nodes labelled @,

• variable or constant nodes labelled α for some constant or variable α.

We write N for the set of nodes of τ(M), NΣ for the set of Σ-labelled nodes, N@ for the set of
@-labelled nodes, Nvar for the set of variable nodes, Nfv for the subset of Nvar constituted of
free-variable nodes and r for the root of τ(M).

Let T denote the set of λ-terms. Each subtree of the computation tree τ(M) represents a
subterm of dMe. We define the function κ : N → T that maps a node n ∈ N to the subterm of
dMe represented by the subtree of τ(M) rooted at n. In particular if r is the root of τ(M) then
κ(r) = dMe.

Definition 3.1.6 (Type and order of a node). Suppose Γ ` M : T . Each node n of τ(M) is
assigned a type type(n) defined as follows:

type(r) = Γ → T

type(α : A) = A, where α is a variable or constant

type(n) = B, where κ(n) : B for n ∈ (Nλ ∪N@) \ {r} .

The order of a node n written ord(n) is defined to be ord(type(n)).

In particular, ord(@) = 0, ord(λξ) = 1 + maxz∈ξ ord(z) for r 6= λξ and if r = λξ then ord(r) =
1 + maxz∈ξ∪Γ ord(z) with the convention that max ∅ = −1.
Some remarks:

• In a computation tree, nodes at even level are λ-nodes and nodes at odd level are either
application nodes, variable or constant nodes;

• for any ground type variable or constant α, τ(α) = τ(λ.α) = λ

α

;

• for any higher-order variable or constant α : (A1, . . . , Ap, o), the computation tree τ(α) has
the following form: λ

α

λξ1

. . .

. . . λξp

. . .

;

• for any tree of the form λϕ

n

λξ1 . . . λξp

, we have ord(κ(n)) = 0.

3.1.3 Pointers and justified sequence of nodes

Definition 3.1.7 (Binder). Let n be a variable node of the computation tree labelled x. We say
that a node n is bound by the node m, and m is called the binder of n, if m is the closest node in
the path from n to the root of the tree such that m is labelled λξ with x ∈ ξ.

Definition 3.1.8 (Enabling). The enabling relation ` is defined on the set of nodes of the com-
putation tree. We write m ` n and we say that m enables n if and only if

• n is a bound variable node and m is the binder of n,

• or n is a free variable node and m is the root of the computation tree,

3.1. Computation tree 73

• or n is a λ-node and m is the parent node of n.

For any set of nodes S we write S�r for {n ∈ S | r `∗ n} – the subset of S constituted of nodes
hereditarily enabled by r. We call input-variables nodes the elements of N �r

var i.e. variables that
are hereditarily enabled by the root. N �r

var is also the set of nodes that are hereditarily enabled by
a free variable or by a variable bound by the root.

Definition 3.1.9 (Justified sequence of nodes). A justified sequence of nodes is a sequence of nodes
of the computation tree τ(M) with pointers attached to the nodes. A node n in the sequence that
is either a variable node or a lambda-node different from the root of the computation tree has a
pointer to a node m occurring before n in the sequence such that m ` n. If n points to m then
we say that m justifies n and we represent the pointer in the sequence as follows:

m · . . . · n

Such pointer is sometimes labelled with an index i: indicating that n is labelled with the ith
variable abstracted in m if m is a λ-node, or that n is the ith child of m otherwise.

Note that justified sequences are also defined for open terms: occurrences of nodes in Nfv must
point to an occurrence of the root of the computation tree.

A pointer in a justified sequence of nodes has one of the following forms:

r · . . . · z λξ · . . . · ξi

i

@ · . . . · λη

j

α · . . . · λη

k

where r denotes the root of τ(M), z ∈ Nfv, ξ1, . . . ξn are bound variables, α ∈ NΣ∪Nvar, i ∈ 1..n,
j ranges from 0 to the number of children nodes of @ minus 1 and k ∈ 1..arity(α).

The following numbering conventions are used:

• the first child of a @-node is numbered 0,

• the first child of a variable or constant node is numbered 1,

• variables in ξ are numbered from 1 onward (ξ = ξ1 . . . ξn).

We use the notation n.i to denote the ith child of node n.

We write s = t to denote that the justified sequences t and s have same nodes and pointers.
Justified sequence of nodes can be ordered using the prefix ordering: t v t′ if and only if t = t′ or
the sequence of nodes t is a finite prefix of t′ (and the pointers of t are the same as the pointers of
the corresponding prefix of t′). Note that with this definition, infinite justified sequences can also
be compared. This ordering gives rise to a complete partial order.

We say that a node n0 of a justified sequence is hereditarily justified by np if there are nodes
n1, n2, . . . np−1 in the sequence such that for all i ∈ 0..p− 1, ni points to ni+1.

If H is a set of nodes and s a justified sequence of nodes then we write s � H to denote the
subsequence of s obtained by keeping only the nodes that are hereditarily justified by nodes in H .
This subsequence is also a justified sequence of nodes. If n denotes a node of τ(M) we abbreviate
s � {n} into s � n.

Lemma 3.1.10. For any set of node N , the filtering function � N defined on the cpo of justified
sequences ordered by the prefix ordering is continuous.

Proof. Clearly � N is monotonous. Suppose that (ti)i∈ω is a chain of justified sequence of nodes.
Let u be a finite prefix of (

∨
ti) � r. Then u = s � r for some finite prefix s of

∨
ti. Since s is

finite we must have s v tj for some j ∈ ω. Therefore u v tj � r v
∨

(tj � r). This is valid for any
finite prefix u therefore (

∨
ti) � r v

∨
(tj � r).

74 Chapter 3. Computation trees, traversals and game semantics

Definition 3.1.11 (P-view of justified sequence of nodes). The P-view of a justified sequence of
nodes t of τ(M), written ptq, is defined as follows:

pεq = ε

ps · nq = psq · n

ps ·m · . . . · λξq = psq ·m · λξ

ps · rq = r

where r is the root of the tree τ(M) and n ranges over non-lambda nodes (i.e. NΣ ∪N@ ∪Nvar).
In the second clause, the pointer associated to n is preserved from the left-hand side to the

right-hand side i.e. if in the left-hand side, n points to some node in s that is also present in psq
then in the right-hand side, n points to this occurrence of the node in psq.

Similarly, in the third clause the pointer associated to m is preserved.

We also define O-view, the dual notion of P-view:

Definition 3.1.12 (O-view of justified sequence of nodes). The O-view of a justified sequence of
nodes t of τ(M), written xty, is defined as follows:

xεy = ε

xs · λξy = xsy · λξ

xs ·m · . . . · xy = xsy ·m · x

xs · ny = n

where x ranges over variable nodes and n ranges over non-lambda nodes without pointer (i.e.
N@ ∪NΣ).

The pointer associated to λξ in the second equality and the pointer associated to m in the
third equality are preserved from the left-hand side to the right-hand side of the equalities.

Definition 3.1.13 (Alternation and Visibility).
A justified sequence of nodes s satisfies:

• Alternation if for any two consecutive nodes in s, one is a λ-node and the other is not;

• P-visibility if every variable node in s points to a node occurring in the P-view a that point;

• O-visibility if every lambda node in s points to a node occurring in the O-view a that point.

Property 3.1.14. The P-view (resp. O-view) of a justified sequence verifying P-visibility (resp.
O-visibility) is a well-formed justified sequence verifying P-visibility (resp. P-visibility).

This is proved by an easy induction.

3.1.4 Adding value-leaves to the computation tree

We now add leaves to the computation tree that has been defined in the previous section. These
leaves, called value-leaves, are attached to the nodes of the computation tree. Each value-leaf
corresponds to a possible value of the base type o. We write D to denote the set of values of the
base type o. The values leaves are added as follows: every node n ∈ τ(M) has a child leaf denoted
by vn for each possible value v ∈ D.

Everything that we have defined for computation tree can be lifted to this new version of
computation tree. The node order of a value-leaf is defined to be 0. The enabling relation ` is
extended so that every leaf is enabled by its parent node. The definition of justified sequence does
not change. When representing a link in a justified sequence going from a value-leaf vn to a node
n, we label the link with v:

n · . . . · vn

v

3.1. Computation tree 75

For the definition of P-view, O-view and visibility, value-leaves are treated as λ-nodes if they
are at odd level in the computation tree and as variable nodes if there at a even level.

From now the term “computation tree” refers to this extended definition.

Let n be a node of a justified sequence of nodes. If there is an occurrence of a value-leaf vn

in the sequence that points to n we say that n is matched by vn. If there is no value-leaf in the
sequence that points to n we say that n is an unmatched node. The last unmatched node is called
the pending node. A justified sequence of nodes is well-bracketed if each value-leaf in the traversal
points to the pending node at that point.

If t is a traversal then we write ?(t) to denote the subsequence of t consisting only of unmatched
nodes.

3.1.5 Traversal of the computation tree

Intuitively, a traversal is a justified sequence of nodes of the computation tree where each node
indicates a step that is taken during the evaluation of the term.

Traversals for simply-typed λ-terms

We first define traversals for computation trees of simply typed λ-terms with no interpreted con-
stants. We will then we show how to extend the definition to the general setting of λ-calculus
augmented with interpreted constants.

Definition 3.1.15 (Traversals for simply-typed λ-terms). In the simply-typed λ-calculus without
interpreted constants, a traversal over a computation tree τ(M) is a justified sequence of nodes
defined by induction on the rules given below. A maximal-traversal is a traversal that cannot be
extended by any rule. If T denotes a computation tree then we write T rav(T) to denote the set
of traversals of T . We also use the abbreviation T rav(M) for T rav(τ(M)).

Initialization rules

• (ε) The empty sequence of node ε is a traversal.

• (Root) The length 1 sequence r, where r is denotes the root of τ(M), is a traversal.

Structural rules

• (Lam) Suppose that t ·λξ is a traversal and n is the only child node of λξ in the computation
tree then

t · λξ · n

is also a traversal where n points to the only occurrence of its enabler in pt · λξq. (Prop.
3.1.20 shows that traversals are well-defined and that indeed n’s enabler occurs only once in
the P-view at that point).

In particular, if n is a free variable node then n points to the first node of t.

• (App) If t · @ is a traversal then so is
t · @ · n

0

i.e. the next visited node is the 0th child node of @ : the node corresponding to the operator
of the application.

Input-variable rules

• (InputVarval) If t = t1 · x · t2 is a traversal where x ∈ N �r
var and x is the pending node in t

(i.e. ?(t) =?(t1) · x) then for any v ∈ D, t1 · x · t2 · vx

v

is a traversal.

• (InputVar) If t = t1 · x · t2 is a traversal where x ∈ N �r
var and x is the pending node in t

(i.e. ?(t) =?(t1) · x) then so is t1 · x · t2 · n
i

for all λ-node n whose parent occurs in xt1 · xy,
n pointing to some occurrence of its parent node in xt1 · xy.

76 Chapter 3. Computation trees, traversals and game semantics

Copy-cat rules

• (CCAnswer-@) If t · @ · λz · . . . · vλz

v0

is a traversal then so is: t · @ · λz · . . . · vλz · v@

v0

v

.

• (CCAnswer-λ) If t · λξ · x · . . . · vx

v

is a traversal then so is: t · λξ · x · . . . · vx · vλξ

v
v

.

• (CCAnswer-var) If t ·y ·λξ · . . . ·vλξ

v

is a traversal, where y is a non input-variable node, then
the following is also a traversal:

t · y · λξ · . . . · vλξ · vy

v

v

.

• (Var) If t · xi is a traversal where xi is not an input-variable, then the rule (Var) permits
to visit the node corresponding to the subterm that would be substituted for xi if all the
β-redexes occurring in M were reduced.

The binding node λx necessarily occurs previously in the traversal. Since x is not hereditarily
justified by the root, λx is not the root of the tree and therefore its justifier p - which is also
its parent node - occurs immediately before itself it in the traversal. We do a case analysis
on p:

– Suppose p is an @-node then λx is necessarily the first child node of p and p has exactly
|x| + 1 children nodes:

...
@[p]

λx

0

xi

λη1...

1

ληi...

i

λη|x|...

|x|

In that case, the next step of the traversal is a jump to ληi – the ith child of @ – which
corresponds to the subterm that would be substituted for xi if the β-reduction was
performed:

t′ · @[p] · λx · . . . · xi · ληi · . . .

i
i

∈ T rav(M)

– Suppose p is variable node y, then necessarily the node λx has been added to the
traversal t≤y using the (Var) rule (this is proved in proposition 3.1.20(i)). Therefore
y is substituted by the term κ(λx) during the evaluation of the term and we have
ord(y) = ord(λx).

Consequently, during reduction, the variable xi is substituted by the subterm repre-
sented by ληi – the ith child node of y. Hence the following justified sequence is also a
traversal:

t′ · y[n] · λx · . . . · xi · ληi · . . .
i

i

Note that a traversal always starts with the root of the tree.

Remark 3.1.16. Our notions of computation tree and traversal differ slightly from [52].
Firstly, our computation trees do not have nodes labelled with (uninterpreted) first-order

constants. On the other hand, there are nodes which are labelled by free variables of any order.
Since uninterpreted constants can be regarded as free variables, we do not lose any expressivity.
Also, the traversal rules (InputVarval) and (InputVar) provide a more general version of the (Sig)
rule of [52] that models free variables and not just “constructor” constants.

Secondly we have introduced copy-cat rules that permit to visit the value-leaves of the com-
putation tree. The presence of value-leaves is necessary to model free variables as well as the
interpreted constants present in extensions of the λ-calculus such as PCF or IA.

3.1. Computation tree 77

Example 3.1.17. Consider the following computation tree:

λ

@

λy
0

y

λη1...

1

ληi...

i

ληn...

n

λx
1

xi

An example of traversal of this tree is:

λ · @ · λy · . . . · y · λx · . . . · xi · ληi · . . .
i
i

1

1

Traversals for interpreted constants

Definition 3.1.18 (Well-behaved traversal rule). A traversal rule is well-behaved if it can be
stated under the following form:

t = t1 · n · t2 ∈ T rav ?(t) =?(t1) · n P (t)

t′ = t1 · n · t2 ·m ∈ T rav
m ∈ S(t)

such that:

1. n is a variable or a constant node;

2. P expresses some condition on t;

3. S(t) is some subset of E(n), the set of children λ-nodes and value-leaves of n. If S(t) has
more than one element then the rule is non-deterministic.

Note that if t is well-bracketed then t′ is also well-bracketed and if ?(t) satisfies alternation
(resp. visibility) then so does ?(t′).

Example 3.1.19. The rule (InputVarval) is an example of non-deterministic well-behaved traversal
rule for which S(t) is exactly the set of all children value-leaves of n: S(t) = {vn | v ∈ D}. However
(InputVar) is not well-behaved since it can jump to any node in the O-view at that point and not
necessarily to a children node of the last pending node.

In the presence of higher-order interpreted constants, additional rules must be specified to
indicate how the constant nodes should be traversed in the computation tree. These rules are
specific to the language that is being studied. In the last section of this chapter we will define
such traversals for the interpreted constants of PCF and IA.

From now on, we consider a simply-typed λ-calculus language extended with higher-order
interpreted constants for which some constant traversal rules have been defined and we take the
following condition as a prerequisite:

(Condition WB) The constant traversal rules are well-behaved.

Some properties of traversals

Proposition 3.1.20. Let t be a traversal. Then:

(i) t is a well-defined and well-bracketed justified sequence;

78 Chapter 3. Computation trees, traversals and game semantics

(ii) ?(t) is a well-defined justified sequence verifying alternation, P-visibility and O-visibility;

(iii) p?(t)q is the path in the computation tree going from the root to the last node in ?(t).

This is the counterpart of proposition 6 from [51] which is proved by induction on the traversal
rules. This proof can be easily adapted to take into account the constant rules (using the assump-
tion that constants rules are well-behaved) and the presence of value-leaves in the traversal.

Proof. The proof of (i), (ii) and (iii) is done simultaneously by induction on the traversal rules.
We consider the rules (Var) and (Lam) only.

Rule (Var): we just give a partial proof of (i). See proposition 6 from [51] for the details of
(i), (ii) and (iii). We have to show that in the second case of the (Var) rule, where p is a variable
node y, the node λx has necessarily been added to the traversal t≤y using the (Var) rule. This
is immediate since if the rule (InputVar) was used to produce t<y · y · λx this would imply that
λx is hereditarily justified by the root which in turn implies that xi is an input-variable. Hence
reaching a contradiction.

Rule (Lam): we need to show that n’s enabler occurs only once in the P-view at that point.
By the induction hypothesis we have (by (iii)) that p?(t · λξ)q is a path in the computation tree
from the root to λξ. n’s enabler occurs only once in this path: it is precisely it’s binding node.
Therefore the traversal t · λξ · n is well-defined and ?(t · λξ · n) satisfies P-visibility i.e. we have
proved (i) and (ii). Since n is a child of λξ we also have (iii).

Definition 3.1.21 (Traversal reduction). Let r be the root of the computation tree. We say that
the justified sequence of nodes s is a reduction of the traversal t just when s = t � r.

Since @-nodes and Σ-constants do not have pointers, the reduction of traversal contains only
nodes in Nλ ∪Nvar.

Lemma 3.1.22. Let M be a term in β-normal form and t be a traversal of τ(M). If ?(t) =

u1 ·m · u2 · n where m ∈ (Nvar ∪NΣ) \ (N �r
var ∪N

�r
Σ) then u2 = ε.

Proof. By case analysis on the rule used to visit the node n in t. The only relevant rules are
(Var), (CCAnswer-var), (InputVarval), (InputVar) and the constant rules. Since the term is in
β-normal form, there is no @-node in τ(M) and therefore (Var) cannot be used. Since m is not
hereditarily justified by the root, it is not an input-variable and therefore the rules (InputVarval)
and (InputVar) cannot be used. For the rule (CCAnswer-var) the result follows from the well-
bracketedness of traversals. For constant rules, the result follows from the well-behaviour of
constant rules (condition WB).

Lemma 3.1.23 (View of a traversal reduction). Suppose that M is a β-normal term and t is a
traversal of τ(M) then

(i) p?(t) � rq = p?(t)q � r ;

(ii) if the last node in t is hereditarily justified by r then x?(t) � ry = x?(t)y .

Proof. (i) By induction. It is trivially true for the empty traversal. Step case: consider a traversal
t and suppose that the property (i) is verified for all traversal smaller than t. There are three
cases:

• If ?(t) = t′ · r then we have:

p?(t)q � r = pt′ · rq � r (definition of ?(t))

= r � r (def. P-view)

= r (def. operator �)

= p(t′ � r) · rq (def. P-view)

= p(t′ · r) � rq (def. operator �)

= p?(t) � rq (definition of ?(t))

3.2. Game semantics of simply-typed λ-calculus with Σ-constants 79

• If ?(t) = t′ · n where n ∈ Nvar ∪NΣ then we have:

p?(t)q � r = pt′ · nq � r (definition of ?(t))

= (pt′q · n) � r (P-view computation)

= pt′q � r · (n � r) (definition of filtering �)

= pt′ � rq · (n � r) (induction hypothesis)

= pt′ � r · (n � r)q (P-view computation, n ∈ Nvar ∪NΣ)

= p(t′ · n) � rq (definition of filtering �)

= p?(t) � rq (definition of ?(t))

• If ?(t) = t′ ·m · u · n where m ∈ Nλ \N �r
λ then u = ε by lemma 3.1.22 and:

p?(t)q � r = pt′ ·m · nq � r (u = ε)

= (pt′q ·m · n) � r (P-view computation)

= pt′q � r (m,n 6∈ N �r)

= pt′ � rq (induction hypothesis)

= p(t′ ·m · n) � rq (m,n 6∈ N �r)

= p?(t) � rq (def. of ?(t), u = ε)

• If ?(t) = t′ ·m · u · n where m ∈ N �r
λ then we have:

p?(t)q � r = pt′ ·m · u · nq � r (definition of ?(t))

= (pt′q ·m · n) � r (P-view computation)

= pt′q � r ·m · n (m,n ∈ N �r)

= pt′ � rq ·m · n (induction hypothesis)

= pt′ � r ·m · (u � r) · nq (P-view computation)

= p(t′ ·m · u · n) � rq (m,n ∈ N �r)

= p?(t) � rq (def. of ?(t))

(ii) By a straightforward induction similar to (i).

Lemma 3.1.24 (Traversal of β-normal terms). Let M be a β-normal term, r be the root of the
tree τ(M) and t be a traversal of τ(M). For any node n occurring in t:

r does not hereditarily justify n ⇐⇒ n is hereditarily justified by some node in NΣ.

Proof. In a computation tree, the only nodes that do not have justification pointer are: the root
r, @-nodes and Σ-constant nodes. But since M is in β-normal form, there is no @-node in the
computation tree. Hence nodes are either hereditarily justified by r or hereditarily justified by a
node in NΣ. Moreover r is not in NΣ therefore the “or” is exclusive : a node cannot be hereditarily
justified at the same time by r and by some node in NΣ.

3.2 Game semantics of simply-typed λ-calculus with Σ-constants

We are working in the general setting of an applied simply-typed λ-calculus with a given set
of higher-order constants Σ. The operational semantics of these constants is given by certain
reduction rules. We assume that a fully abstract model of the calculus is provided by means of a
category of well-bracketed games. For instance, if Σ is the set of PCF constants then we work in
the category Cb of well-bracketed defined in section 1.3.3 of the first chapter.

80 Chapter 3. Computation trees, traversals and game semantics

We will use the alternative representation of strategy defined in remark 1.2.9: a strategy is
given by a prefix-closed set instead of an “even length prefix”-closed set. In practice this means
that we replace the set of plays σ by σ ∪ dom(σ). This permits to avoid considerations on the
parity of the length of traversals when we show the correspondence between traversals and game
semantics. We write [[Γ `M : A]] for the strategy denoting the simply-typed term Γ `M : A and
Pref(S) to denote the prefix-closure of the set S.

3.2.1 Relationship between computation trees and arenas

Example

Consider the following term M ≡ λfz.(λgx.f(fx))(λy.y)z of type (o → o) → o → o. Its η-long
normal form is λfz.(λgx.f(fx))(λy.y)(λ.z). The computation tree is:

λfz

@

λgx

f

λ

f

λ

x

λy

y

λ

z

The arena for the type (o→ o) → o→ o is:

q1

q3

q4

a4
1 . . .

a3
1 . . .

q2

a2
1 a2

2 . . .

a1 a2 . . .

The figure below represents the computation tree (left) and the arena (right). The dashed line
defines a partial function ϕ from the set of nodes in the computation tree to the set of moves. For
simplicity, we now omit answers moves when representing arenas.

λfz[1]

@[2]

λgx[3]

f [6]

λ[7]

f [8]

λ[9]

x[10]

λy[4]

y

λ[5]

z

q1

q3

q4

q2 q5

ϕ

Consider the justified sequence of moves s ∈ [[M]]:

s = q1 q3 q4 q3 q4 q2 ∈ [[M]]

There is a corresponding justified sequence of nodes in the computation tree:

3.2. Game semantics of simply-typed λ-calculus with Σ-constants 81

r = λfz · f [6] · λ[7] · f [8] · λ[9] · z

such that si = ϕ(ri) for all i < |s|.
The sequence r is in fact the reduction of the following traversal:

t = λfz · @[2] · λgx[3] · f [6] · λ[7] · f [8] · λ[9] · x[10] · λ[5] · z.

By representing side-by-side the computation tree and the type arena of a term in η-normal
form we have observed that some nodes of the computation tree can be mapped to question moves
of the arena. In the next section, we show how to define this mapping in a systematic manner.

Formal definition

Let us establish precisely the relationship between arenas of the game semantics and the compu-
tation trees. Let Γ ` M : A be a term in η-long normal form. The computation tree τ(M) is
represented by a pair (V,E) where V is the set of vertices of the trees and E is the edges relation.
V = N ∪ L where N is the set of nodes and L is the set of value-leaves. The relation E ⊆ V × V
gives the parent-child relation on the vertices of the tree. We write V$ for N$ ∪ (E(N$)∩L) where
$ ranges over {@, var,Σ, fv}.

Let D be the set of values of the base type o. If n is a node in N then the value-leaves attached
to the node n are written vn where v ranges in D. Similarly, if q is a question in [[A]] then the
answer moves enabled by q are written vq where v ranges in D.

If A is an arena and q is a move in A then we write Aq to denote the subarena of A rooted at
q.

Definition 3.2.1 (Mapping from nodes to moves). For any term Γ `M : T , we define a function
ψn,q

M where the parameter n is a node of the computation tree τ(M) and the parameter q is a
question move of the arena [[T]] such that q and n are of type (A1. . . . Ap, o) for some p ≥ 0. Let
` (q) = {q1, . . . , qp} ∪ {vq : v ∈ D}.

The function ψn,q
N from V �n to [[T]] is defined as follows:

case 1 If p = 0 (n is labelled with λ or with a ground type variable) then

ψn,q
M = {n 7→ q} ∪ {vn 7→ vq | v ∈ D}

case 2 If p ≥ 1 and n ∈ Nλ with n labelled λξ = λξ1 . . . ξp and with a child node labelled α then
the computation tree and the arena [[T]] have the following forms (value-leaves and answer
moves are not represented for simplicity):

λξ
[n]

α

.

q

q1 q2 . . . qp

For each abstracted variable ξi there exists a corresponding question move qi of the same
order in the arena. ψn,q

M maps each free occurrence of a variable ξi to the corresponding
move qi:

ψn,q
M = {n 7→ q} ∪ {vn 7→ vq | v ∈ D} ∪

⋃

m ∈ N |n `i m

ψm,qi

M

82 Chapter 3. Computation trees, traversals and game semantics

case 3 If p ≥ 1 and n ∈ Nvar then n is labelled with a variable x : (A1, . . . , Ap, o) with children
nodes λη1, . . . , ληp. The computation tree τ(M) and the arena [[T]] have the following forms:

x[n]

λη1...

. . . ληp...

q

q1 q2 . . . qp

ψn,q
M maps each child node of n to the corresponding question move qi of the same type in

the arena [[T]]:

ψn,q
M = {n 7→ q} ∪ {vn 7→ vq | v ∈ D} ∪

⋃

i=1..m

ψ
ληi,q

i

M

Note that ψn,q
M is only a partial function from V to A since it is defined only on nodes that are

hereditarily justified by the root but not hereditarily justified by a free variable node. In other
words, ψn,q

M is undefined on nodes that are hereditarily justified by Nfv ∪N@ ∪NΣ.

We write MM to denote the following disjoint union of arenas:

MM = [[Γ → T]]]
⊎

n∈N∩E(|N@∪NΣ|)

[[type(κ(n))]].

Moves in MM are implicitly tagged so it is possible to recover the arena in which they belong.

Definition 3.2.2 (Total mapping from nodes to moves). For a closed simply-typed term `M : T
we define the total function ϕM : Vλ ∪ Vvar → MM as:

ϕM = ψ
r,q0

[[Γ→T]]

[[Γ→T]] ∪
⋃

n∈N∩E(|N@∪NΣ|)

ψ
n,q0

[[type(κ(n))]]

[[type(κ(n))]])

where q0A denotes the only initial question of the arena A (arenas involved in the game semantics
of simply-typed λ-calculus have a single root).

For an open term Γ `M : T with Γ = x1 : X1 . . . xp : Xp we define ϕM as ϕλx1...xn.M .
When there is no ambiguity we omit the subscript in ϕM .

Nodes of τ(M) are either hereditarily justified by the root, by a @-node or by a Σ-node,
therefore ϕM is totally defined on Vλ ∪ Vvar = V \ (V@ ∪ VΣ).

Example 3.2.3. Consider the term λx.(λg.gx)(λy.y) with x, y : o and g : (o, o). The diagram below
represents the computation tree (middle), the arenas [[(o, o) → o]] (left), [[o→ o]] (right), [[o→ o]]
(rightmost) and the function ϕ = f(λx, qλx) ∪ f(λg, qλg) ∪ f(λy, qλy) (dashed-lines).

λx

@

λg

g

λ

x

λy

y

qλx

qx

qλg

qg

qg1

qλy

qy

f(λx, qλx)

f(λg, qλg) f(λy, qλy)

The following properties are immediate consequences of the definition of the procedure f :

Property 3.2.4.

(i) ϕ maps λ-nodes to O-questions, variable nodes to P-questions, value-leaves of λ-nodes to
P-answers and value-leaves of variable nodes to O-answers;

3.2. Game semantics of simply-typed λ-calculus with Σ-constants 83

(ii) ϕ maps nodes of a given order to moves of the same order.

Remark: we recall that in definition 3.1.6, the node-order is defined differently for the root
λ-node and other λ-nodes. This convention was chosen to guarantee that property (ii) holds.

By extension, the function ϕ is also defined on justified sequences of nodes: if t = t0t1 . . . is a
justified sequence of nodes in Vλ ∪Vvar then ϕ(t) is defined to be the following sequence of moves:

ϕ(t) = ϕ(t0) ϕ(t1) ϕ(t2) . . .

where the pointers of ϕ(t) are defined to be exactly those of t. This definition implies that
ϕ : (Vλ ∪ Vvar)

∗ → M∗ regarded as a function from pointer-less sequences of nodes to pointer-less
sequences of moves is a monoid homomorphism.

Property 3.2.5. Let t be a justified sequence of nodes. The following properties hold:

(i) ϕ(t) and t have the same pointers;

(ii) the P-view of ϕ(t) and the P-view of t are computed identically: the set of indices of elements
that must be removed from both sequences in order to obtain their P-view is the same;

(iii) the O-view of ϕ(t) and the O-view of t are computed identically;

(iv) if t is a justified sequence of nodes in Vλ ∪ Vvar then ?(ϕ(t)) = ϕ(?(t)),

where ?(ϕ(t)) denotes the subsequence of ϕ(t) consisting of the unanswered questions and ?(t)
denotes the subsequence of t consisting of the unmatched nodes (see the definition in section
3.1.4).

Proof. (i): By definition of ϕ, t and ϕ(t) have the same pointers;
(ii) and (iii): ϕ maps lambda nodes to O-question, non-lambda nodes to P-question, value-

leaves of lambda nodes to P-answers and value-leaves of non-lambda to O-answers. Therefore
since t and ϕ(t) have the same pointers, the computations of the P-view (resp. O-view) of the
sequence of moves and the P-view (resp. O-view) of the sequence of nodes follow the same steps;

(iv) is a consequence of (i).

3.2.2 Category of interaction games

In game semantics, strategy composition is achieved by performing a CSP-like “composition +
hiding”. It is possible to define an alternative semantics where the internal moves are not hidden
when performing composition. This semantics is named revealed semantics in [24] and interaction
semantics in [22].

In addition to the moves of the standard semantics, the interaction semantics contains certain
internal moves of the computation. Consequently, the interaction semantics depends on the syn-
tactical structure of the term and therefore cannot lead to a full abstraction result. However this
semantics will prove to be useful to identify a correspondence between the game semantics of a
term and the traversals of its computation tree.

We will be interested in the interaction semantics computed from the η-normal form of a term.
However we do not want to keep all the internal moves. We will only keep the internal moves
that are produced when composing two subterms of the computation tree that are joined by an
@-node. This means that when computing the strategy of yN1 . . . Np where y is a variable, we
keep the internal moves of N1, . . . , Np, but we omit the internal moves produced by the copy-cat
projection strategy denoting y.

Definition 3.2.6 (Type-tree). We call type decomposition tree or type-tree, a tree whose leaves
are labelled with linear simple types and nodes are labelled with symbol in {; ,×,⊗, †,Λ}.

Nodes labelled ;, × or ⊗ are binary nodes and nodes labelled † or Λ are unary nodes.
Every node or leaf of the tree has a linear type, this type is determined by the structure of the

tree as follows:

84 Chapter 3. Computation trees, traversals and game semantics

• a leaf has the type of its label;

• a †-node with the child node of type !A (B has type !A (!B;

• a Λ-node with the child node of type A⊗B (C has type A ((B (C);

• a ×-node with two children nodes of type A and B has type A×B;

• a ⊗-node with two children nodes of type A and B has type A⊗B;

• a ;-node with two children nodes of type A (B and B (C has type A (C.

For a type-tree to be well-defined, the type of the children nodes must be compatible with the
meaning of the node, for instance the two children nodes of a ;-node must be of type A (B and
B (C.

We write type(T) to denote the type represented by the root of the tree T and we say that T
is a valid tree decomposition of type(T).

If T1 and T2 are type-trees we write T1 × T2 to denote the tree obtained by attaching T1 and
T2 to a ×-node. Similarly we use the notations T1 ⊗ T2, T1;T2, Λ(T1) and T †

1 .

Let T be a type-tree. Each leaf or node of type A in T can be mapped to the (standard) arena
[[A]]. By taking the image of T across this mapping we obtain a tree whose leaves and nodes are
labelled by arenas. This tree, written 〈〈T 〉〉, is called the interaction arena of type T . We write
root(〈〈T 〉〉) to denote the arena located at the root of the interaction arena 〈〈T 〉〉.

A revealed strategy Σ on the interaction arena 〈〈T 〉〉 is a composition of several standard strate-
gies where certain internal moves are not hidden. Formally this can be defined as follows:

Definition 3.2.7 (Revealed strategy). A revealed strategy Σ on a game 〈〈T 〉〉, written Σ : 〈〈T 〉〉,
is a type-tree T where

• each leaf [[A]] of 〈〈T 〉〉 is annotated with a (standard) strategy σ on the game [[A]];

• each ;-node is annotated with a set of indices U ⊆ N.

A ;-node with children of type A (B and B (C is annotated with a set of indices U
indicating which components of B should be uncovered when performing composition. More
precisely, if B = B0×. . .×Bl then the revealed strategy built by connecting two revealed strategies
Σ1 : 〈〈A (B〉〉 and Σ2 : 〈〈B (C〉〉 using a ;-node annotated with U represents the set of uncovered
plays obtained by performing the usual composition while ignoring and copying the internal moves
already in Σ1 and Σ2 and preserving any internal move produced by the composition in some
component Bk for k ∈ U .

Example 3.2.8. The diagrams below represent a type-tree T (left) the corresponding interaction
arena 〈〈T 〉〉 (middle) and a revealed strategy Σ (right):

;

;

A (B B (C

C (D

;

;

[[A (B]] [[B (C]]

[[C (D]]

;{0}

;{0}

A (Bσ1 B (Cσ2

C (Dσ3

A revealed strategy can also be written as an expression, for instance the strategy represented
above is given by the expression Σ = (σ1;

{0} σ2);
{0} σ3. We will use the abbreviation Σ1 #U Σ2 for

Σ†
1;

U Σ2.

Definition 3.2.9 (Composition of revealed strategies). Suppose Σ1 : 〈〈T1〉〉 and Σ2 : 〈〈T2〉〉 are
revealed strategies where type(T1) = A (B and type(T2) = B (C then the interaction
composition of Σ1 and Σ2 written Σ1; Σ2 is the revealed strategy on 〈〈T1;T2〉〉 obtained by copying
the annotation of the leaves and nodes from Σ1 and Σ2 to the corresponding leaves and nodes of
the type-tree T1;T2 and by annotating the root node with ∅.

3.2. Game semantics of simply-typed λ-calculus with Σ-constants 85

A play of the interaction semantics, called an uncovered play, is a play containing internal
moves. The moves are implicitly tagged so that it is possible to retrieve in which component of
which node or leaf-arenas the move belongs to. Note that a same move can belong to different
node/leaf-arenas. The internal moves of an interaction play on the game 〈〈T 〉〉 are those which do
not belong to the arena root(〈〈T 〉〉).

For any uncovered play s and any interaction arena 〈〈T 〉〉 we can define the filtering operator
s � 〈〈T 〉〉 to be the sequence of moves obtained from s by keeping only the moves belonging to a
node or leaf-arena of 〈〈T 〉〉.

Revealed strategies can alternatively be represented by means of sets of uncovered plays instead
of annotated type-trees. This set is defined inductively on the structure of the annotated type-tree
Σ as follows:

• for a leaf [[A]] of Σ annotated by σ : [[A]], it is just the set of plays of the standard strategy σ;

• for a ⊗-node with two children strategies Σ1 and Σ2, it is the tensor product written Σ1⊗Σ2;

• for a ×-node, it is the pairing written 〈Σ1,Σ2〉;

• for a †-node with a child strategy Σ, it is the promotion written Σ†;

• for a Λ-node with a child strategy Σ, it is the same set of plays with the moves retagged
appropriately;

• for a ;U -node, it is the “uncovered-composition” of Σ1 : 〈〈T1〉〉 and Σ2 : 〈〈T2〉〉 which is
written Σ1;

U Σ1 and defined as follows: suppose that type(T1) = A (B0 × . . . × Bl and
type(T2) = B0 × . . . × Bl (C then Σ1;

U Σ1 is the set of uncovered plays obtained by
performing the usual composition while ignoring and copying the internal moves from arenas
in 〈〈T1〉〉 or 〈〈T2〉〉 and preserving any internal move produced by the composition in some
component Bk for k ∈ U . Formally:

Σ1‖Σ2 = {u ∈ int(〈〈T 〉〉) | u � 〈〈T1〉〉 ∈ Σ1 and u � 〈〈T2〉〉 ∈ Σ2}

Σ1;
U Σ2 = {cover(u, U) | u ∈ Σ1‖Σ2}

where int(〈〈T 〉〉) denotes the set of sequences of moves in (some arena of) 〈〈T 〉〉 and cover(u, U)
denotes the subsequence of u obtained by removing nodes that are in Bj for some j ∈
(0..l) \ U ;

where the tensor product, pairing and promotion are defined similarly as in the standard game
semantics.

In chapter 1 we defined the category of games whose objects are the arenas [[A]] for some linear
type A and morphisms are the strategies. We now define the category I of interaction games:

Definition 3.2.10 (Category of interaction games). We write I for the category of interaction
games whose objects are those of C i.e. the arenas [[A]] for some linear type A, and morphisms
are the revealed strategies: a morphism from A to B is a revealed strategy Σ on some interaction
arena 〈〈T 〉〉 such that root(〈〈T 〉〉) = [[!A (B]].

The composition of two morphisms Σ1 and Σ2 is given by Σ1 # Σ2 = Σ†
1; Σ2 where ; denotes

the revealed strategy composition. The identity on A is the revealed strategy given by the single
annotated leaf [[!A (A]]

derA .

It can be checked that this indeed defines a category. The constructions of the category C can
be transposed to I making I a cartesian closed category.

Definition 3.2.11 (Valid strategy). Consider a term Γ `M : A and a revealed strategy Σ : 〈〈T 〉〉.
We say that Σ is a valid revealed strategy for M if root(〈〈T 〉〉) = [[Γ → A]] or equivalently if
type(T) = Γ → A.

86 Chapter 3. Computation trees, traversals and game semantics

Modeling the λ-calculus in I

We would like to use the category I to model terms of the simply-typed lambda calculus. Depend-
ing on the internal moves that we wish to hide, we obtain different possible interaction strategies
for a given term. We now fix a unique strategy denotation which is computed from the η-normal
form of the term.

Definition 3.2.12 (Revealed denotation of a term). The revealed game denotation or revealed
strategy of M written 〈〈Γ `M : A〉〉 is defined by structural induction on the η-long normal form
of M as follows:

Let ξ = ξ1 : Y1, . . . ξn : Yn and z be a variable ranging in Γ ∪ ξ. If z ∈ Γ then πz denotes the
ith projection copycat strategy πi : [[Γ ∪ ξ]] → [[Xi]] for some 1 ≤ i ≤ |Γ|. If z = ξj then πz denotes
the (n+ j)th projection πn+j : [[Γ ∪ ξ]] → [[Yj]].

〈〈Γ ` λξ.z〉〉 = Λn(πz)

〈〈Γ ` λξ.zN1 . . . Np〉〉 = Λn(〈πz , 〈〈Γ ` N1 : A1〉〉, . . . , 〈〈Γ ` Np : Ap〉〉〉 #
1..p evp)

〈〈Γ ` λξ.fN1 . . . Np〉〉 = 〈〈〈Γ ` N1〉〉, . . . , 〈〈Γ ` Np〉〉〉 #
0..p−1 [[f]]

〈〈Γ ` λξ.N0 . . . Np〉〉 = Λn(〈〈〈Γ ` N0 : A0〉〉, . . . , 〈〈Γ ` Np : Ap〉〉〉 #
{0..p} evp)

where Γ ` N0 : (A1, . . . , Ap, B), Γ ` z : (A1, . . . , Ap, B), Γ ` Nk : Ak for k ∈ 1..p, f :
(A1, . . . , Ap, B) ∈ Σ and evp denotes the evaluation strategy with p parameters.

We write 〈〈Γ → A〉〉M to denote the interaction arena of the revealed strategy 〈〈Γ `M : A〉〉.

Note that when computing 〈〈zN1 . . . Np〉〉, for some variable z, the internal moves of N1, . . . ,
Np are preserved but we omit the internal moves produced by the copy-cat projection strategy
denoting z.

Example 3.2.13. Consider the term λx.(λf.fx)(λy.y). Its computation tree is:

λx

@

λf

f

λ

x

λy

y

and its revealed strategy is 〈[[x : X ` λf.fx]], [[x : X ` λy.y]]〉 #{0,1} ev2.

From interaction semantics to standard semantics and vice-versa

In the standard semantics, given two strategies σ : A→ B, τ : B → C and a sequence s ∈ σ # τ , it
is possible to (uniquely) recover the internal moves. The uncovered sequence is written u(s, σ, τ).
The algorithm to obtain this unique uncovering is given in part II of [31].

Given a term M , we can completely uncover the internal moves of a sequence s ∈ [[M]] by
performing the uncovering recursively at every @-node of the computation tree. This operation is
called full-uncovering with respect to M .

Conversely, the standard semantics can be recovered from the interaction semantics by filtering
the moves, keeping only those played in the root arena:

[[Γ `M : A]] = 〈〈Γ `M : A〉〉 � [[Γ → T]] (3.1)

Full abstraction

Let I ′ denote lluf sub-category of I consisting only of strategies Σ with a single annotated leaf
and no nodes. We have the following lemma:

3.2. Game semantics of simply-typed λ-calculus with Σ-constants 87

Lemma 3.2.14 (I ′ is isomorphic to C). I ′ ∼= C

Proof. We define the functor F : I ′ → C by F (A) = A for any object A ∈ I′ and for Σ ∈ I′(A,B),
F (Σ) is defined to be the annotation σ of the only leaf in Σ. The functor G : C → I′ is defined
by G(A) = A for any object A ∈ C and for σ ∈ C(A,B), G(σ) is the tree formed with the single
annotated leaf [[A]]σ. Then F ;G = idI′ and G;F = idC .

Consequently the lluf sub-category I ′ is fully abstract for the simply-typed lambda calculus.
Note that this is a major difference with I which is not fully-abstract since there may be several
maps denoting a given term.

3.2.3 The correspondence theorem for the simply-typed λ-calculus without
interpreted constants

In this section, we establish a connection between the interaction semantics of a simply-typed term
without constants (Σ = ∅) and the traversals of its computation tree. In the following, we fix a
term Γ `M : T .

Removing @-nodes from traversals

When defining computation trees, it was necessary to introduce application nodes (labelled @) in
order to connect the operator and the operand of an application. The presence of @-nodes has
also another advantage: it ensures that the lambda-nodes are all at even level in the computation
tree. Consequently a traversal respects Alternation.

Application nodes are however redundant in the sense that they do not play any role in the
computation of the term. In other words, the @-nodes occurring in traversals are superfluous. In
fact it is necessary to filter them out if we want to establish the correspondence with the interaction
game semantics.

Definition 3.2.15 (Filtering @-nodes in traversals). Let t be a traversal of τ(M). We write t−@
for the sequence of nodes with pointers obtained by

• removing from t all @-nodes and value-leaves of a @-node;

• replacing any link pointing to an @-node by a link pointing to the immediate predecessor of
@ in t.

Suppose u = t−@ is a sequence of nodes obtained by applying the previously defined transfor-
mation on the traversal t, then t can be partially recovered from u by reinserting the @-nodes as
follows. For each @-node @ in the computation tree with parent node denoted by p, we perform
the following operations:

1. replace every occurrence of the pattern p · n, where n is a λ-nodes, by p · @ · n;

2. replace any link in u starting from a λ-node and pointing to p by a link pointing to the
inserted @-node;

3. if there is an occurrence in u of a value-leaf vp pointing to p then insert a value-leaf v@
immediately before vp and make it point to the node immediately following p (which is also
the @-node that we inserted in 1).

We write u+ @ for this second transformation.

These transformations are well-defined because in a traversal, an @-node always occurs in-
between two nodes n1 and n2 such that n1 is the parent node of @ and n2 is the first child node
of @ in the computation tree:

n1

@

n2...

88 Chapter 3. Computation trees, traversals and game semantics

Remark: t − @ is not a proper justified sequence since after removing a @-node, any λ-node
justified by @ will become justified by the parent of @ which is also a λ-node.

The following lemma follows directly from the definition:

Lemma 3.2.16. For any traversal t we have (t−@)+@ v t and if t does not end with an @-node
then (t− @) + @ = t.

Let r denote the root of τ(M). We introduce the following notations:

T rav(M)−@ = {t− @ | t ∈ T rav(M)}

T rav(M)�r = {t � r | t ∈ T rav(M)} .

Lemma 3.2.17. If M is in β-normal form then t = t � r = t − @ for any t ∈ T rav(M).
Consequently T rav(M)−@ = T rav(M) = T rav(M)�r .

Proof. The computation tree of a β-normal term does not contain any @-node therefore all the
nodes are hereditarily justified by the root.

Lemma 3.2.18 (Filtering lemma). For any traversal t we have ϕ(t − @) � [[Γ → T]] = ϕ(t � r).
Consequently:

ϕ(T rav−@(M)) � [[Γ → T]] = ϕ(T rav�r(M)) .

Proof. From the definition of ϕ, the nodes of the computation tree that are mapped by ϕ to moves
of the arena [[Γ → T]] are exactly the nodes that are hereditarily justified by r. The result follows
from the fact that @-nodes are not hereditarily justified by the root.

The function ϕ regarded as a function from the set of vertices Vλ ∪ Vvar of the computation
tree to moves in arenas is not injective. For instance the two occurrences of x in the computation
tree of the term λfx.fxx are mapped to the same question. However the function ϕ regarded as
a function from sequences of nodes to sequences of moves is injective:

Lemma 3.2.19 (ϕ is injective). ϕ regarded as a function defined on the set of sequences of nodes
is injective in the sense that for any two traversals t1 and t2:

(i) if ϕ(t1 − @) = ϕ(t2 − @) then t1 − @ = t2 − @ ;

(ii) if ϕ(t1 � r) = ϕ(t2 � r) then t1 � r = t2 � r .

Proof. For any node n of a traversal t we write ptr(n) to denote the distance between n and its
justifier node in t. If n has not link then we set ptr(n) = 0. We also use the same notation for
sequences of moves.

Lemma 3.2.20 (Preleminary lemma).

(
t · n1, t · n2 ∈ T rav
∧ n1 6= n2

)

implies n1, n2 ∈ N �r
λ ∧ (ϕ(n1) 6= ϕ(n2) ∨ ptr(n1) 6= ptr(n2)) . (3.2)

Proof. Let t · n1, t · n2 ∈ T rav. First we remark that the traversal rules have a weak form of
determinism which ensures that n1 and n2 belong to the same category of node i.e. they must be
both in Nvar, N@ or Nλ.

Suppose that n1, n2 ∈ N@ then t · n1 and t · n2 were formed using the (App) rule. Since this
rule is deterministic we must have n1 = n2 which violates the second hypothesis.

Suppose that n1, n2 ∈ Nvar. The traversals t ·n1 and t ·n2 must have been formed using either
rule (Lam) or (App). But these two rules are deterministic and their domains of definition are
disjoint. Hence again the second hypothesis is violated.

Suppose that n1, n2 ∈ Nλ then the traversals t · n1 and t · n2 must have been formed using
either rule (Root), (App), (Var) or (InputVar). Since all these rules have disjoint domains of
definition, the same rule must have been use to form t · n1 and t · n2. Supposed that one of the
rules (Root), (App) and (Var) has been used then since they are all deterministic we have n1 = n2

3.2. Game semantics of simply-typed λ-calculus with Σ-constants 89

which violates the second hypothesis. Consequently, the rule (InputVar) must have been used and

therefore n1, n2 ∈ N �r
λ . By definition of (InputVar), in order to have n1 6= n2 and ϕ(n1) = ϕ(n2),

the parent node of the last node in t must occurs at more than one position in xty and n1, n2

correspond to the child node of two different occurrences of that parent node in xty. But then the
links associated to n1 and n2 will point to their respective occurrence of that parent node in xty
hence ptr(n1) 6= ptr(n2).

(i) Suppose that t1 −@ 6= t2 −@ then necessarily t1 6= t2. Therefore there are some sequences
t′, u1, u2 and some nodes n1, n2 such that t1 = t′ · n1 · u1, t2 = t′ · n2 · u2 and either n1 6= n2 or
ptr(n1) 6= ptr(n2).

If n1 = n2 then ptr(n1) 6= ptr(n2) therefore n1, n2 6∈ N@ (otherwise ptr(n1) = 0 = ptr(n2)).
Since ptr(ϕ(n1)) = ptr(n1) and ptr(ϕ(n2)) = ptr(n2) we must have ϕ(t′ · n1) 6= ϕ(t′ · n2). Since
n1, n2 6∈ N@ we also have ϕ((t′ · n1) − @) 6= ϕ((t′ · n2) − @). Hence ϕ(t1 − @) 6= ϕ(t2 − @).

If n1 6= n2 then by Lemma 3.2.20 we have n1, n2 6∈ N@ and ϕ(n1) 6= ϕ(n2) or ptr(n1) 6= ptr(n2).
Again this implies that ϕ(t1 − @) 6= ϕ(t2 − @).

(ii) Suppose that t � r 6= t′ � r then necessarily t 6= t′ which in turn implies that for some
sequences t′1, t

′
2, u1, u2 and some nodes n1 6= n2 we have t1 = t′ ·n1 ·u1, t2 = t′ ·n2 ·u2 and either

n1 6= n2 or ptr(n1) 6= ptr(n2).
If n1 = n2 then ptr(n1) 6= ptr(n2). An analysis of the traversal rules shows that the rule

(InputVar) is the only rule which can visit the same node with two different pointers. Hence

n1, n2 ∈ N �r
λ . Therefore ϕ((t′ ·n1) � r) = ϕ((t′ � r) ·n1) 6= ϕ((t′ � r) ·n2). Hence ϕ(t1 � r) 6= ϕ(t2 �

r).
If n1 6= n2 then we can use Lemma 3.2.20 to obtain ϕ(t1 � r) 6= ϕ(t2 � r).

Corollary 3.2.21.

(i) ϕ defines a bijection from T rav(M)−@ to ϕ(T rav(M)−@) ;

(ii) ϕ defines a bijection from T rav(M)�r to ϕ(T rav(M)�r) .

The correspondence theorem

We are now going to state and prove the correspondence theorem for the simply-typed λ-calculus
without interpreted constants (Σ = ∅). The result extends immediately to the simply-typed λ-
calculus with uninterpreted constants by considering constants as being free variables. We use
the cartesian closed category of games C (defined in section 1.3.3 of the first chapter) as a model
of the simply-typed λ-calculus. We write [[Γ `M : A]] for the strategy denoting the simply-typed
term Γ `M : A.

Proposition 3.2.22. Let Γ `M : T be a term of the simply-typed λ-calculus and r be the root of
τ(M). We have:

(i) ϕM (T rav(M)−@) = 〈〈M〉〉 ;

(ii) ϕM (T rav(M)�r) = [[M]] .

Remark 3.2.23. The proof that follows is quite tedious but the idea is simple. Let us give the
intuition. We start by reducing the problem to the case of closed terms only. Then the proof
proceeds by induction on the structure of the computation tree. The base case is straightforward.
Now consider an application M with the following computation tree τ(M):

λξ

@

τ(N0) . . . τ(Np)

A traversal of τ(M) proceeds as follows: it starts at the root λξ of the tree τ(M) (rule (Root)),
it then passes the node @ (rule (Lam)). After this initialization part, it proceeds by traversing the

90 Chapter 3. Computation trees, traversals and game semantics

term N0 (rule (App)). At some point, while traversing N0, some variable yi bound by the root of
N0 is visited. The traversal of N0 is interrupted and there is a jump (rule (Var)) to the root of
τ(Ni). The process goes on by traversing τ(Ni). When traversing Ni, if the traversal encounters
a variable bound by the root of τ(Ni) then the traversal of Ni is interrupted and the traversal of
N0 resumes. This schema is repeated until the traversal of τ(N0) is completed1.

The traversal of M is therefore made of an initialization part followed by an interleaving of a
traversal of N0 and several traversals of Ni for i = 1..p. This schema is reminiscent of the way the
evaluation copycat map ev works in game semantics.

The key idea is that every time the traversal pauses the traversal of a subterm and switches
to another one, the jump is permitted by one of the four copycat rules (Var), (CCAnswer-@),
(CCAnswer-λ) or (CCAnswer-var). We show by (a second) induction that these copycat rules
defines exactly what the copycat strategy ev performs on sets of moves.

Let us fix some notation: we write s � A,B for the sequence obtained from s by keeping
only the moves that are in A or B and by removing any link pointing to a move that has been
removed. If m is an initial move, we write s � m to denote the thread of s initiated by m, i.e.
the sequence obtained from s by keeping all the moves hereditarily justified by m. We also write
s � A,B,m where m is an initial move for the sequence obtained from s � A,B by keeping all
moves hereditarily justified by m.

Proof. (i) Suppose Γ = ξ1 : X1, . . . ξn : Xn. Then we have:

〈〈Γ `M : T 〉〉 = Λn(〈〈∅ ` λξ1 . . . ξn.M : (X1, . . . , Xn, T)〉〉)

' 〈〈∅ ` λξ1 . . . ξn.M : (X1, . . . , Xn, T)〉〉 .

Similarly the computation tree τ(M) is isomorphic to τ(λξ1 . . . ξn.M) (up to a renaming of the
root of the computation tree) therefore T rav(M) is also isomorphic to T rav(λξ1 . . . ξn.M). Hence
we can make the assumption that M is a closed term. If we prove that the property is true for
all closed terms of a given height then it will be automatically true for any open term of the same
height.

Let us assume that M is already in η-long normal form. We proceed by induction on the height
of the tree τ(M) and by case analysis on the structure of the computation tree:

• (abstraction of a variable): M ≡ λξ.x. Since M is in η-long normal form, x must be of
ground type and since M is closed we have x = ξi ∈ ξ for some i. Hence τ(M) has the
following shape:

λξ
[0]

ξ
[1]
i

The arena is of the following form (only question moves are represented):

q0

q1 q2 . . . qn

Let πi denote the ith projection of the interaction game semantics. We have:

〈〈M〉〉 = 〈〈∅ ` λξ.ξi〉〉

= Λn(〈〈ξ ` ξi〉〉)

= Λn(πi)
∼= πi

= Pref({q0 · q
i · vqi · vq0 | v ∈ D}) .

1 Since we are considering simply-typed terms, the traversal does indeed terminate. However this will not be
true anymore in the PCF case.

3.2. Game semantics of simply-typed λ-calculus with Σ-constants 91

Since M is in β-normal we have T rav(M)−@ = T rav(M). It is easy to see that the set of
traversals of M is the set of prefix of the traversal λξ · ξi · vξi

· vλξ:

T rav−@(M) = T rav(M) = Pref(λξ · ξi · vξi
· vλξ) .

The pointers of the traversal λξ · ξi ·vξi
·vλξ are the same as the play q0 ·qi ·vqi ·vq0 , therefore

since ϕM (λξ) = q0 and ϕM (ξi) = qi we have:

ϕM (T rav−@(M)) = 〈〈M〉〉 .

• (abstraction of an application): we have M = λξ.N0N1 . . . Np. Let Γ be the context Γ =
ξ : X . Then we have the following sequents: ∅ ` M : (X1, . . . , Xn, o), Γ ` N0N1 . . . Np : o,
Γ ` Ni : Bi for i ∈ 0..p with B0 = (B1, . . . , Bp, o) and p ≥ 1.

There are two subcases, either N0 ≡ ξi where α is a variable in ξ and the tree has the
following form:

λξ
[0]

ξ
[1]
i

τ(N1) . . . τ(Np)

or N0 is not a variable and the tree τ(M) has the following form:

λξ
[0]

@[1]

λy1 . . . yp

. . .

τ(N1) . . . τ(Np)

We only consider the second case since the first one can be treated similarly. Moreover we
make the assumption that p = 1. It is straightforward to generalize to any p ≥ 1. We write
λz to denote the root of the tree τ(N1).

We have:

〈〈M〉〉 = Λn(〈〈Γ ` N0N1 : o〉〉) (game semantics for abstraction)
∼= 〈〈Γ ` N0N1 : o〉〉 (up to moves retagging)

= 〈〈〈Γ ` N0〉〉, 〈〈Γ ` N1〉〉〉 #
0..1 ev (game semantics for application)

= 〈ϕN0(T rav
−@(N0)), ϕN1(T rav

−@(N1)〉 #
0..1 ev (induction hypothesis)

= 〈ϕM (T rav−@(N0)), ϕM (T rav−@(N1))〉 #
0..1 ev (ϕM = f(0, q0) ∪ ϕN0 ∪ ϕN1)

= 〈ϕM (T rav−@(N0)), ϕM (T rav−@(N1))〉
︸ ︷︷ ︸

σ

‖ ev (#0..1 and ‖ are the same operator)

The strategies σ and ev are defined on the arena !A (B and !B (C respectively where:

A = 〈〈Γ〉〉 = 〈〈X1〉〉 × . . .× 〈〈Xn〉〉

B = 〈〈B0〉〉 × 〈〈B1〉〉 = 〈〈B′
1 → o′〉〉 × 〈〈B1〉〉

C = 〈〈o〉〉

92 Chapter 3. Computation trees, traversals and game semantics

We have u ∈ 〈〈M〉〉 ∼= σ† ‖ ev if and only if







u ∈ int(!A, !B,C)
u �!A, !B ∈ σ†

u �!B,C ∈ ev

or equivalently







u ∈ int(!A, !B,C)
for any initial m in u �!A, !B there is j ∈ 0..p such that
{
u �!A,Bj ,m ∈ ϕM (T rav−@(Nj))
u �!A,Bk,m = ε for every k 6= j

We first prove that 〈〈M〉〉 ⊆ ϕM (T rav−@(M)).

Suppose u ∈ 〈〈M〉〉. We give a constructive proof that there exists a sequence of nodes t in
N such that ϕM (t − @) = u by induction on the length of u. Let qo be the initial question
of the arena [[M]] and q1 the initial question of [[N0]].

Base cases:

– u = ε then ϕ(ε) = u where the traversal ε is formed with the rule (ε).

– If |u| = 1 then u = q0 is the initial move in C and ϕ(λξ) = u. The traversal λξ is
formed with the rule (Root).

Step cases: Suppose that u′ = ϕM (t′ − @) and u = u′ · m ∈ 〈〈M〉〉 with |u| > 1 for some
traversal t′ of τ(M). Let us write m1 for the last move in u′.

1. Suppose m ∈ C. In C there are no internal moves, the only moves of C are therefore
q0 and vq0 for some v ∈ D. But q0 can occur only once in u, therefore since |u| > 1 we
must have m = vq0 for some v ∈ D. Since m is an answer move to the initial question,
it must be the duplication (performed by the copy-cat evaluation strategy) of the move
m1 played in o′. Hence m1 = vq1 . By the induction hypothesis, n′ – the last move in
t′ – is equal to ϕ(m1) = vλy1 .

By property 3.2.5(iv), ?(u′) = ϕ(?(t′ − @)) and since q0 is the pending question in
u′, the first node of t′ is also the pending node in t′. This permits us to use the rule
(CCAnswer-λ) to produce the traversal t = t′ · vλξ where vλξ points to the first node in
t′. Clearly, ϕ(t− @) = u.

2. Suppose that m,m1 ∈ A∪B0. The strategy ev is responsible for switching thread in B0

therefore, in the interaction semantics, there must be a copycat move in-between two
moves belonging to two different threads. Since m and m1 are consecutive moves in the
sequence u, they must belong to the same thread i.e. there are hereditarily justified by
the same initial m0 in B0.

We then have (u �!A, !B) � m0 = ϕN0(t0−@) for some traversal t0 of N0. Consequently
ϕN0(n

1) = m1 and ϕN0(n) = m where n1 · n are the last two moves in t0 − @.

n points to some node in t0 that also occurs in t′. Let us call n2 this node. Since
(u �!A, !B) � m0 = ϕN0(t0 − @), n2 must have the same position in t′ as the node
justifying m in u′. Hence we just need to take t = t′ · n where n points to n2 in t′.

The sequence t is indeed a valid traversal of τ(M) because the rule used by the traversal
t0 of τ(N0) to visit the node n after n1 can also be used by the traversal t′ of τ(M) to
visit n after n1. This can be checked formally by inspecting all the traversal rules. The
key reason is that all the nodes in t0 − @ are present in t′ with the same pointers but
with some nodes interleaved in between. However these interleaved nodes are inserted
in a way that still permits to use the traversal rule.

3. Suppose that m,m1 ∈ A ∪B1. The proof is similar to the previous case.

3.2. Game semantics of simply-typed λ-calculus with Σ-constants 93

4. Suppose that m ∈ A ∪B0 and m1 ∈ A ∪B1.

t is obtained from t−@ using the transformation +@. We apply the same transformation
to u in order to make O-questions and P -questions in umatch with λ-nodes and variable
nodes in t′ respectively. We write this sequence u+@. The +@ operation inserts nodes
in the sequence but not at the end, therefore m1, the last move in u′, is also the last
move in u′ + @. Let us note n1 for the last move in t′.

(a) If n1 is the application node @ then it must be the parent of the node λy1 since it
is the only non-internal @-node present in t′. Therefore t′ = λξ ·@ and u = q0 ·m.
But m is the copy of q0 replicated by ev in o′ therefore m = q1. Applying the (App)
rule on t′ produces the traversal λξ ·@ ·λy1 with ϕ((λξ ·@ ·λy1)−@) = q0 · q1 = u.

(b) If n1 is a variable node then m1 is a P-move and m is an O-move and therefore m
is the copy of m1 duplicated in B1 by the evaluation strategy. Consequently, m1

points to some m2 and m points to the node preceding m2 denoted by m3. The
diagram below shows an example of such sequence:

(B′
1 → o′) × B1 → o′

O q0(λξ)
P
O q1(λy)
P m3(y1)
O m2(λz)
P m1(zi)
O m

@

t′ and u+ @ have the following forms:

t′ = . . . · n3 · n2 · . . . · n1

u+ @ = . . . ·m3 ·m2 · . . . ·m1 ·m

Since n1 is a variable node, n2 must be a λ-node. n3 could be either a variable
node or an @-node. In fact n3 is necessarily a variable node. Indeed, n3 is mapped
to m3 by ϕN0 and m3 belongs to [[B′

i]] (i.e. it is not an internal move of 〈〈B′
i〉〉).

The function ϕN0 is defined in such a way that only nodes which are hereditarily
justified by the root of τ(N0) are mapped to nodes in [[B′

1]]. Hence n3 is hereditarily
justified by the root and consequently it cannot be an @-node.
Hence n1 is a variable node, n2 is a λ-node and n3 is a variable node. We can
therefore apply the (Var) rule to t′ and we obtain a traversal of the following form:

t = . . . · n3 · n2 · . . . · n1 · n

We have ϕ(t′ −@) = u′ by the induction hypothesis and ϕ(n) = m by definition of
ϕ. Therefore since m and n point to the same position we have ϕ(t− @) = u.

(c) If n1 is the value-leaf of a variable node then we proceed the same way as in
the previous case: n1 is a value-leaf of the variable node n2 and we can use the
(CCAnswer-λ) rule to extend the traversal t′.

(d) Suppose that n1 is a lambda node, in which case m1 is an O-move, then necessarily,
m1 is a move copied by the evaluation strategy from B′

1 to B1. The move following
m1 should also be played in B1 before being copied back to B′

1 by the evaluation
strategy. But since m ∈ B0, this case does not happen.

(e) If n1 is a value-leaf of a lambda node then n2 is a lambda node and n3 is a variable
node. We can therefore use the rule (CCAnswer-var) or (CCAnswer-@) to extend
the traversal t′.

94 Chapter 3. Computation trees, traversals and game semantics

5. Suppose m ∈ A ∪B1 and m1 ∈ A ∪B0 then the proof is similar to the previous case.

For the converse, ϕM (T rav−@(M)) ⊆ 〈〈M〉〉, it is an easy induction on the traversal rules.
We omit the details here.

(ii) is an immediate consequence of (i):

[[M]] = 〈〈M〉〉 � [[Γ → T]] (eq. 3.1)

= ϕM (T rav−@(M)) � [[Γ → T]] (by (i))

= ϕM (T rav�r(M)) (lemma 3.2.18)

Putting corollary 3.2.21 and proposition 3.2.22 together we obtain the following theorem which
establishes a correspondence between the game-denotation of a term and the set of traversals of
its computation tree:

Theorem 3.2.24 (The Correspondence Theorem). For any simply-typed term Γ `M , ϕM defines
a bijection from T rav(M)�r to [[M]] and a bijection from T rav(M)−@ to 〈〈M〉〉:

ϕM : T rav(Γ `M)�r
∼=
−→ [[Γ `M]]

ϕM : T rav(Γ `M)−@ ∼=
−→ 〈〈Γ `M〉〉

Moreover when M is in β-normal form, for any traversal t, if ϕM (t) is a maximal play then
t is a maximal traversal.

Proof. The first part is an immediate consequence of corollary 3.2.21 and proposition 3.2.22.
Finally, if M is in β-normal form then T rav(M)�r = T rav(M) therefore ϕ is defined on

T rav(M). Let t be a traversal such that ϕ(t) is a maximal play. Let t′ be a traversal such
that t v t′. By monotonicity of ϕ this implies ϕ(t) v ϕ(t′) and since ϕ(t) is maximal we have
ϕ(t) = ϕ(t′). ϕ being injective we conclude t′ = t.

The following diagram recapitulates the main results of this section:

T rav(M)−@

+@

ww

ϕM

∼=
// 〈〈M〉〉

�[[Γ→T]]

��

T rav(M)
−@

66

�r

**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

T rav(M)�r
ϕM

∼=
// [[M]]

∼= full uncovering

SS

Chapter 4

GAME-SEMANTIC CHARACTERISATION OF

SAFETY

Safety has been defined as a syntactical constraint. Since Game Semantics is by essence syntax-
independent, it seems difficult at first sight to characterise Safety in a game-semantic manner.
However, with the help of the tools developed in the previous chapter and using the Correspondence
Theorem, we can interpret plays of a strategy as sequences of nodes of some AST of the term.
Therefore it is now possible to investigate the impact of the Safety restriction on Game Semantics.

The main theorem of this chapter (theorem 4.1.8) states that pointers in a play of the strategy
denotation of a safe term can be uniquely recovered from O-questions’ pointers and from the
underlying sequence of moves. The proof is in several steps. We start by introducing the notion of
P-incrementally-justified strategies and prove that for plays of such strategies, pointers emanating
from P-moves can be reconstructed uniquely from the underlying sequences of moves and from O-
moves’ pointers. We then introduce the notion of incrementally-bound computation trees and prove
that incremental-binding coincides with P-incremental-justification (proposition 4.1.5). Finally, we
show that safe simply-typed terms in β-normal form have incrementally-bound computation trees,
consequently their game denotation is P-incrementally-justified.

The first section of this chapter is concerned only with the safe λ-calculus without interpreted
constants. In the next section we extend the result by taking into account the interpreted constants
of PCF and IA. We define the language safe IA (resp. safe PCF) to be the fragment of IA (resp.
PCF) where the application and abstraction rules are constrained the same way as in the safe
λ-calculus. We show that safe PCF terms are denoted by P-incrementally-justified strategies and
we give the key elements for a possible extension of the result to Safe Idealized Algol.

4.1 Safe λ-Calculus

Let us consider the safe λ-calculus without interpreted constants. Our aim is to prove that pointers
in the game semantics of safe terms can be uniquely recovered.

The example of section 1.2.8 gives a good intuition: in order to distinguish the terms M1 =
λf.f(λx.f(λy.y)) and M2 = λf.f(λx.f(λy.x)) we have to keep the pointers in the plays of strate-
gies. However, if we limit ourselves to the safe λ-Calculus then the ambiguity disappears because
M1 is safe whereas M2 is not (in the subterm f(λy.x), the free variable x has the same order as
y but x is not abstracted together with y).

Definition 4.1.1 (P-incremental-justification). A strategy σ on a game A is P-incrementally-
justified if and only if for any sequence of moves sq ∈ PA we have:

sq ∈ σ ∧ q is a P-question =⇒ q points to the last O-move in p?(s)q with order strictly
greater than ord(q).

Lemma 4.1.2. Pointers emanating from P-moves are superfluous for P-incrementally-justified
strategies.

Proof. Suppose σ is a P-incrementally-justified strategy. We prove that pointers attached to P-
moves in a play s ∈ σ are uniquely recoverable by induction on the length of s. Base case: if

96 Chapter 4. Game-semantic characterisation of safety

|s| ≤ 1 then there is no pointer to recover. Step case: suppose sm ∈ σ. If m is an answer move
then by the well-bracketing condition m points to the last unanswered question in s. If m is a
P-question then by P-incremental-justification of σ, m points to the last O-move in p?(s)q with
order strictly greater than ord(q). Since we have access to O-moves’ pointers, we can compute the
P-view p?(s)q. Hence m’s pointer is uniquely recoverable.

Example 4.1.3. The denotation of the evaluation map ev is not P-incrementally-justified. Indeed
consider the play s = q0q1q2q3 ∈ [[ev]] shown on the diagram below:

(A =⇒ B) × A
ev
−→ B

q0
q1

q2
q3

The order of the moves are as follows: ord(q3) = ord(A), ord(q2) = ord(A), ord(q1) = max(1 +
ord(A), ord(B)) and ord(q0) = 1 + ord(q1). The last O-move in ?(psq) = s with order strictly
greater than ord(q3) is q1. But since q3 points to q0, [[ev]] is not P-incrementally-justified.

In a computation tree, a binder node always occurs in the path from the bound node to the
root. We now introduce a class of computation trees in which binder nodes can be uniquely
recovered from the order of the nodes. We write [n1, n2] to denote the path from node n1 to node
n2 if it exists and]n1, n2] for the sequence of nodes obtained by removing n1 from [n1, n2].

Definition 4.1.4 (Incrementally-bound computation tree). A variable node x of a computation
tree is said to be incrementally-bound if either:

1. x is bound by the first λ-node in the path to the root that has order strictly greater than
ord(x). Formally:

x bound by n ⇒ n ∈ [r, x] ∧ ord(n) > ord(x) ∧ ∀λ-node n′ ∈]n, x].ord(n′) ≤ ord(x),

2. x is a free variable and all the λ-nodes in the path to the root except the root have order
smaller or equal to ord(x). Formally:

x free ⇒ ∀λ-node n′ ∈]r, x].ord(n′) ≤ ord(x)

where r denotes the root of the computation tree.

A computation tree is said to be incrementally-bound if all the variable nodes are incrementally-
bound.

Proposition 4.1.5 (Incremental-binding coincides with P-incremental-justification). Let M be
a β-normal term.

(i) If τ(M) is incrementally-bound then [[M]] is P-incrementally-justified.

(ii) In the λ-calculus without interpreted constants, conversely, if [[M]] is P-incrementally-justified
then τ(M) is incrementally-bound.

Proof. Let Γ `M : A be a simply-typed term in β-normal form and r denotes the root of τ(M).

(i) Suppose that τ(M) is incrementally-bound. Consider a justified sequence of move s ∈ [[Γ `M]]
ending with a P-question move q (note that q is also the last question in ?(s)). By proposition
3.2.22, there is a traversal t of τ(M) such that ϕM (t � r) = s. We assume that the last node n of t
is hereditarily justified by r (otherwise we replace t by its longest prefix verifying this condition).
Then n is also the last node in ?(t � r) and t � r.

4.1. Safe λ-Calculus 97

• First case: n is a variable node x bound by a node m occurring in t.

Since τ(M) is incrementally-bound, m is the last λ-node in [r, n] of order strictly greater than
ord(n). By visibility, m occurs in p?(t)q and since m is hereditarily justified by r (because n
is) m must occur in p?(t)q � r which in turn is equal to p?(t) � rq (by lemma 3.1.23(i), since
M is in β-normal form).

But p?(t) � rq = p?(t � r)q is a subsequence of p?(t)q which is equal to [r, n] (by proposition
3.1.20), therefore m is also the last λ-node in p?(t � r)q that has order strictly greater than
ord(n).

By property 3.2.5 (ii), the P-view of ?(s) and the P-view of ?(t � r) are computed similarly
and have the same pointers. This means that node n and move q both point to the same
position in the justified sequence p?(t � r)q and p?(s)q respectively.

Finally, since ϕ maps nodes of a given order to moves of the same order (property 3.2.4), q
must point to the last O-move in p?(s)q whose order is strictly greater than ord(q).

• Second case: n is a free variable node x. Then n is enabled by the root which is the
first node in t. By definition of ϕ, ϕ(n) = x must be a move enabled by the initial move
q0 = ϕ(r) in the arena [[Γ → A]]. Therefore ord(q0) > ord(x). Since the computation tree is
incrementally-bound, all the λ-nodes in]r, n] have order smaller than ord(n). Therefore by
the correspondence theorem, all the O-moves in p?(s)q have order smaller than ord(x).

(ii) Suppose that M is β-normal and the strategy [[M]] is P-incrementally-justified. Let x be a
variable node of τ(M). Since M is β-normal, by lemma 3.1.24, x is either hereditarily justified by
the root r or by a constant in NΣ. Since we are working in the simply-typed λ-calculus without
constants we have NΣ = ∅ therefore x is hereditarily justified by r.

We remark that for terms in β-normal form, every variable node occurring in the computation
tree can be visited by some traversal i.e. there exists a traversal of the form t ·x in T rav(M). The
correspondence theorem gives ϕ((t · x) � r) = ϕ((t � r) · x) ∈ [[M]]. Since [[M]] is P-incrementally-
justified, ϕ(x) must point to the last O-move in p?(ϕ(t � r))q with order strictly greater than
ord(ϕ(x)). Consequently x points to the last λ-node in p?(t � r)q with order strictly greater than
ord(x). Moreover we have:

p?(t � r)q = p?(t) � rq = p?(t)q � r (by lemma 3.1.23)

= [r, x[� r (by proposition 3.1.20)

= [r, x[(M is in β-nf and NΣ = ∅).

Therefore if x is a bound variable node then it is bound by the last λ-node in [r, x[with order
strictly greater than ord(x) and if x is a free variable then it points to r and therefore all the
λ-node in]r, x[have order smaller than ord(x). Hence τ(M) is incrementally-bound.

λx3

f2

λy1

x0

Examples: Consider the β-normal term λx.f(λy.x) where x, y : o and f : (o, o), o. The
figure on the right represents the computation tree with the order of each node in the
exponent part. Since node x of order 0 is not bound by the order 1 node λy, τ(M) is
not incrementally-bound and by proposition 4.1.5 [[λx.f(λy.x)]] is not P-incrementally-
justified. Similarly we can check that [[f(λy.x)]] is not P-incrementally-justified whereas
[[λy.x]] is. Also for any higher-order variable x : A, the computation tree τ(x) is incrementally-
bound, therefore the projection strategies πi are P-incrementally-justified. From these examples
we observe that application does not preserve P-incremental-justification ([[f]] and [[λy.x]] are P-
incrementally-justified whereas [[f(λy.x)]] is not).

These examples suggest that P-incremental-justification is not a compositional property. Since
the evaluation map ev is not P-incrementally-justified (see example 4.1.3), application cannot
conserve P-incremental-justification in the general case. One interesting problem would be to find
some condition under which the composition of two P-incrementally-justified strategy remains
P-incrementally-justified. Unfortunately we have not provided an answer to that question yet.

98 Chapter 4. Game-semantic characterisation of safety

Lemma 4.1.6 (Safe terms have incrementally-bound computation trees). Let Γ `M be a simply-
typed term.

(i) If M is a safe term then τ(M) is incrementally-bound ;

(ii) conversely, if M is closed and τ(M) is incrementally-bound then the η-normal form of M
is safe.

Proof. (i) Suppose that M is safe. The safety property is preserved after taking the η-long normal
form, therefore τ(M) is the tree representation of a safe term.

In the safe λ-calculus, the variables in the context with the the lowest order must be all
abstracted at once when using the abstraction rule. Since the computation tree merges consecutive
abstractions into a single node, any variable x occurring free in the subtree rooted at a λ-node
λξ different from the root must have order greater or equal to ord(λξ). Reciprocally, if a lambda
node λξ binds a variable node x then ord(λξ) = 1 + maxz∈ξ ord(z) > ord(x).

Let x be a bound variable node. Its binder occurs in the path from x to the root, therefore,
according to the previous observation, x must be bound by the first λ-node occurring in [r, x] with
order strictly greater than ord(x). Let x be a free variable node then x is not bound by any of
the λ-nodes occurring in [r, x]. Once again, by the previous observation, all these λ-nodes except
r have order smaller than ord(x). Hence τ is incrementally-bound.

(ii) Let M be a closed term such that τ(M) is incrementally-bound. We assume that M is
already in η-normal form. We prove that M is safe by induction on its structure. The base case
M = λξ.α for some variable or constant α is trivial. Step case: If M = λξ.N1 . . . Np. Let i range
over 1..p. Ni can be written ληi.N

′
i where N ′

i is not an abstraction. By the induction hypothesis,
λξ.Ni = λξηi.N

′
i is safe. Hence ` λξηi.N

′
i is a valid judgment of safe λ-calculus. But this judgment

can only be derived using the (abs) rule on the term N ′
i . Hence N ′

i is necessarily safe. Let z be
a variable occurring free in N ′

i . Since M is closed, z is either bound by λη1 or λξ. If it is bound
by λξ then because τ(M) is incrementally-bound we have ord(z) ≥ ord(λη1) = ord(Ni). Hence in
both case we can abstract the variables η1 using the (abs) rule which shows that Ni is safe.

Each of the Nis are safe and N1 . . .Np is of type o therefore by the (app) rule we have ξ `
N1 . . .Np. Finally, using the (abs) rule we conclude with the judgement `M = λξ.N1 . . . Np.

Note that the hypothesis that M is closed in (ii) is necessary. For instance, the two terms λxy.x
and λy.x, where x, y : o, have (isomorphic) incrementally-bound computation trees. However
λxy.x is safe whereas λy.x is not.

Putting proposition 4.1.5 and lemma 4.1.6 together we obtain a game-semantic characterisation
of safe terms:

Corollary 4.1.7 (P-incrementally-justified strategies characterise safe closed ηβ-normal terms).
Let M be a simply-typed term without interpreted constants. We have:

[[M]] is P-incrementally-justified if and only if ηβnf(M) is safe,

where ηβnf(M) denotes the η-normal form of the β-normal form of M .

Theorem 4.1.8 (P’s pointers are superfluous for safe terms). Pointers emanating from P-moves
in the game semantics of safe terms are uniquely recoverable.

Proof. Let M be a safe simply-typed term. The β-normal form of M denoted by M ′ is also
safe. By lemma 4.1.6 (i), τ(M ′) is incrementally-bound and by proposition 4.1.5, [[M ′]] is a P-
incrementally-justified strategy. By lemma 4.1.2, P’s pointers in [[M ′]] are uniquely recoverable.
Finally, the soundness of the game model gives [[M]] = [[M ′]].

4.2 Safe PCF and Safe Idealized Algol

Safe Idealized Algol, or safe IA for short, is Idealized Algol where the application and abstraction
rules are restricted the same way as in the safe λ-calculus (see rules of section 2.2).

4.2. Safe PCF and Safe Idealized Algol 99

The properties of the safe λ-calculus can be transposed straightforwardly to safe IA. In partic-
ular, it can be shown that safety is preserved by β-reduction and that no variable capture occurs
when performing substitution on a safe term.

A natural question to ask is whether we can extend the result about game semantics of safe
λ-terms to safe IA-terms. In this section we lay out the key elements permitting to prove that the
pointers in the game semantics of safe IA terms can be recovered uniquely.

Such result has potential applications in algorithmic game semantics. For instance, by following
the framework of [23], it may be possible to give a characterisation of the game semantics of some
higher-order fragments of safe IA using extended regular expressions. Subsequently, this would
lead to the decidability of program equivalence for the considered fragment.

4.2.1 Formation rules of Safe IA

We call safe IA term any term that is typable within the following system of formation rules:

(var)
x : A ` x : A

(wk)
Γ `M : A

∆ `M : A
Γ ⊂ ∆

(app)
Γ `M : (A, . . . , Al, B) Γ ` N1 : A1 . . . Γ ` Nl : Al

Γ `MN1 . . .Nl : B
∀y ∈ Γ : ord(y) ≥ ord(B)

(abs)
Γ ∪ x : A `M : B

Γ ` λx : A.M : (A,B)
∀y ∈ Γ : ord(y) ≥ ord(A,B)

(num)
Γ ` n : exp

(succ)
Γ `M : exp

Γ ` succ M : exp
(pred)

Γ `M : exp

Γ ` pred M : exp

(cond)
Γ `M : exp Γ ` N1 : exp Γ ` N2 : exp

Γ ` cond M N1 N2
(rec)

Γ `M : A→ A

Γ ` YAM : A

(seq)
Γ `M : com Γ ` N : A

Γ ` seqA M N : A
A ∈ {com, exp}

(assign)
Γ `M : var Γ ` N : exp

Γ ` assign M N : com
(deref)

Γ `M : var

Γ ` deref M : exp

(new)
Γ, x : var `M : A

Γ ` new x in M
A ∈ {com, exp}

(mkvar)
Γ `M1 : exp → com Γ `M2 : exp

Γ ` mkvar M1 M2 : var

4.2.2 Small-step semantics of Safe IA

In the first chapter we defined the operational semantics of IA using a big step semantics. The
operational semantics of IA can be defined equivalently using a small-step semantics. The reduction
rules of the small-step semantics are of the form s, e→ s′, e′ where s and s′ denotes the stores and
e and e′ denotes IA expressions.

Let us give the rules that tell how to reduce redexes:

• the reduction of safe-redex (relation βs from definition 2.1.9);

100 Chapter 4. Game-semantic characterisation of safety

• reduction rules for PCF constants:

succ n → n+ 1

pred n+ 1 → n

pred 0 → 0

cond 0 N1N2 → N1

cond n+ 1 N1N2 → N2

Y M → M(YM)

• reduction rules for IA constants:

seq skip M → M

s, new x in M → (s|x 7→ 0),M

s, assign x n → (s|x 7→ n), skip

s, deref x → s, s(x)

assign (mkvarMN) n → Mn

deref (mkvarMN) → N

Redex can also be reduced when they occur as subexpressions within a larger expression. We
make use of evaluation contexts to indicate when such reduction can happen. Evaluation contexts
are given by the following grammar:

E[−] ::= −| EN | succ E | pred E | cond E N1 N2 |

seq E N | deref E | assign E n | assign M E |

mkvar M E | mkvar E M | new x in E.

The small-step semantics is completed with following rule:

M → N

E[M] → E[N]

Lemma 4.2.1 (Reduction preserves safety). Let M be a safe IA term. If M → N then N is also
a safe term.

This can be proved easily by induction on the structure of M.

4.2.3 Safe PCF fragment

In this section, we show how to extend the results obtained for the safe λ-calculus to the PCF

fragment of safe IA.
The Y combinator needs a special treatment. In order to deal with it, we follow the idea of [8]:

we consider the sublanguage PCF1 of PCF in which the only allowed use of the Y combinator is in
terms of the form Y (λx : A.x) for some type A. We will write ΩA to denote the non-terminating
term Y (λx : A.x) for a given type A.

We introduce the syntactic approximants to YAM :

Y 0
AM = Γ ` ΩA : A

Y n+1
A M = M(Y nM)

For any PCF term M and natural number n, we define Mn to be the PCF1 term obtained from M
by replacing each subterm of the form Y N with Y nNn. We have [[M]] =

⋃

n∈ω [[Mn]] ([8], lemma
16).

4.2. Safe PCF and Safe Idealized Algol 101

Computation tree

We would like to define a unique computation tree for terms that use the Y combinator.
Let us first define the computation tree for PCF1 terms. We introduce a special Σ-constant

⊥ representing the non-terminating computation of ground type Ωo. Given any type A =
(A1, . . . , An, o), the computation tree τ(ΩA) is defined to be the tree representation of λx1 :
A1 . . . xn : An.⊥. The computation tree of a PCF1 term is then computed inductively in the
standard way.

We now introduce a partial order on the set of computation trees.
A tree t is a labelling function t : T → L where T , called the domain of t and written dom(t),

is a non-empty prefix-closed subset of some free monoid X∗ and L denotes the set of possible
labels. Intuitively, T represents the structure of the tree (the set of all paths) and t is the labelling
function mapping paths to labels. Trees can be ordered using the approximation ordering defined
in [35], section 1: we write t′ v t if the tree t′ is obtained from t by replacing some of its subtrees
by ⊥. Formally:

t′ v t ⇐⇒ dom(t′) ⊆ dom(t) ∧ ∀w ∈ dom(t′).(t′(w) = t(w) ∨ t′(w) = ⊥).

The set of all trees together with the approximation ordering is a complete partial order.
We now consider a strict subset of the set of all trees: the set of computation trees. A

computation tree is a tree which represents the η-normal form of some (potentially infinite) PCF

term. In other words a tree is a computation tree if it can be written τ(M) for some infinite
PCF term M . The set L of labels is constituted of the Σ-constants, @, the special constant ⊥,
variables and abstractions of any sequence of variables. We will write (CT,v) to denote the set
of computation trees ordered by the approximation ordering v defined above. (CT,v) is also a
complete partial order.

It is easy to check that the sequence of computation trees (τ(Mn))n∈ω is a chain. We can
therefore define the computation tree of a PCF term M to be the least upper-bound of the chain
of computation trees of its approximants:

τ(M) =
⋃

n∈ω

(τ(Mn))n∈ω.

In other words, we construct the computation tree by expanding infinitely any subterm of
the form YM . For instance consider the term M = Y (λfx.fx) where f : (o, o) and x : o. Its
computation tree τ(M), represented below, is a tree representation of the η-normal form of the
infinite term (λfx.fx)((λfx.fx)((λfx.fx)(. . ..

τ(M) = λy

@

λfx

f

λ

x

τ(M) λ

y

The remaining operators of IA are treated as standard constants and the corresponding com-
putation tree is constructed from the η-normal form of the term in the standard way. For instance
the diagram below shows the computation tree for cond b x y (left) and λx.5 (right):

λbxy

cond

λ

b

λ

x

λ

y

λx

5

102 Chapter 4. Game-semantic characterisation of safety

The node labelled 5 has, like any other node, children value-leaves which are not represented on
the diagram above for simplicity.

Traversal

New traversal rules accompany the additional constants of IA. There is one additional rule for
natural number constants:

• (Nat) If t ·n is a traversal where n denotes a node labelled with some numeral constant i ∈ N

then t · n · in is also a traversal where in denotes the value-leaf of m corresponding to the
value i ∈ N.

The traversals rules for pred and succ are defined similarly. For instance, the rules for succ are:

• (Succ) If t · succ is a traversal and λ denotes the only child node of succ then t · succ · λ
1

is
also a traversal.

• (Succ’) If t1 · succ · λ · t2 · iλ

1

is a traversal for some i ∈ N then t1 · succ · λ · t2 · iλ · (i+ 1)succ

1

is also a traversal.

In the computation tree, nodes labelled with cond have three children nodes numbered from 1 to
3 corresponding to the three parameters of the operator cond. The traversal rules are:

• (Cond-If) If t1 · cond is a traversal and λ denotes the first child of cond then t1 · cond · λ

1

is
also a traversal.

• (Cond-ThenElse) If t1 · cond · λ · t2 · iλ

1

then t1 · cond · λ · t2 · iλ · λ

1

2 + [i > 0]

is also a traversal.

• (Cond’) If t1 · cond · t2 · λ · t3 · iλ

k

for k = 2 or k = 3 then t1 · cond · t2 · λ · t3 · iλ · icond

k

is also
a traversal.

It is easy to verify that these traversal rules are all well-behaved and therefore condition (WB) of
section 3.1.5 is met. This completes the definition of traversal for the PCF subset of IA.

Interaction semantics

We recall that the interaction semantics defined in section 3.2.2 takes into account the constants
of the language. For any higher-order constant f : (A1, . . . , Ap, B) ∈ Σ, definition 3.2.12 gives the
revealed strategy of a term of the form λξ.fN1 . . . Np as follows:

〈〈λξ.fN1 . . . Np〉〉 = 〈〈〈N1〉〉, . . . , 〈〈Np〉〉〉 #
0..p−1 [[f]].

where [[f]] is the standard strategy denotation of the constant f .

Removing Σ-nodes from the traversals

To establish the correspondence with the interaction semantics, we need to remove the superfluous
nodes from the traversals. These nodes are the @-nodes and the constant nodes. We will use the
operation −@ (definition 3.2.15) to filter out the @-nodes and we introduce a similar operation
−Σ to eliminate the Σ-nodes.

Definition 4.2.2 (Hiding Σ-constants in the traversals). Let t be a traversal of τ(M). We write
t− Σ for the sequence of nodes with pointers obtained by

• removing from t all nodes labelled with a Σ-constant or value-leaf justified by a Σ-constant,

• replacing any link pointing to a Σ-constant f by a link pointing to the predecessor of f in t.

Suppose u = t − Σ is a sequence of nodes obtained by applying the previously defined trans-
formation on the traversal t, then t can be partially recovered from u by reinserting the Σ-nodes
as follows. For each Σ-node f , where p denotes the parent node of f , do the following:

4.2. Safe PCF and Safe Idealized Algol 103

1. replace every occurrence of the pattern p · n in u where n is a λ-node by p · f · n;

2. replace any link in u starting from a λ-node and pointing to p by a link pointing to the
inserted node f ;

3. for each occurrence in u of a value-leaf vp pointing to p, add the value-leaf vf immediately
before vp. The links of vf points to the node immediately following p.

We write u+ Σ for this second transformation.

These transformations are well-defined since in a traversal, a Σ-node f always follows imme-
diately its parent λ-node p, and an occurrence of a value-node vp always follows immediately a
value-node vf . In other words, if f occurs in t then t must be a prefix of a traversal of the following
form for some v ∈ D:

. . . · p · f · . . . · vf · vp · . . .

Remark: t−Σ is not a proper traversal since it does not satisfy alternation. It is not a proper
justified sequence either since after removing a Σ-node f , any λ-node justified by f will become
justified by the parent of f which is also a λ-node.

The following lemma follows directly from the definition:

Lemma 4.2.3. For any traversal t we have (t−Σ) + Σ v t and if t does not end with an Σ-node
or a value-leaf of a Σ-node then (t− Σ) + Σ = t.

The operations −@ and −Σ are commutative: (t − @) − Σ = (t − Σ) − @. We write t∗

to denote (t − @) − Σ i.e. the sequence obtained from t by removing all the @-nodes as well
as the constant nodes together with their associated value-leaves. We introduce the notation
T rav(M)∗ = {t∗ | t ∈ T rav(M)}.

Lemma 4.2.4 (Filtering lemma). Let Γ ` M : T be a term and r be the root of τ(M). For any
traversal t of the computation tree we have ϕ(T rav∗(M)) � [[Γ → T]] = ϕ(T rav�r(M)). Conse-
quently,

ϕ(t∗) � [[Γ → T]] = ϕ(t � r).

Proof. From the definition of ϕ, the nodes of the computation tree that ϕ maps to moves in the
arena [[Γ → T]] are exactly the nodes that are hereditarily justified by r. The result follows from
the fact that @-nodes, constant nodes and value-leaves of constant nodes are not hereditarily
justified by the root.

The following lemma is the counterpart of lemma 3.2.19 and it is proved identically.

Lemma 4.2.5 (ϕ is injective). ϕ regarded as a function defined on the set of sequences of nodes
is injective in the sense that for any two traversals t1 and t2:

(i) if ϕ(t∗1) = ϕ(t∗2) then t∗1 = t∗2;

(ii) if ϕ(t1 � r) = ϕ(t2 � r) then t1 � r = t2 � r.

Corollary 4.2.6.

(i) ϕ defines a bijection from T rav(M)∗ to ϕ(T rav(M)∗);

(ii) ϕ defines a bijection from T rav(M)�r to ϕ(T rav(M)�r).

104 Chapter 4. Game-semantic characterisation of safety

Correspondence theorem

We would like to prove the counterpart of proposition 3.2.22 in the context of the simply-typed
λ-calculus with interpreted PCF constants. The game model of the language PCF is given by the
category Cb of well-bracketed strategies. Hence the well-bracketing assumption stated in section
3.2 is satisfied.

We first prove that T rav�r is continuous.

Lemma 4.2.7. Let (S,⊆) denote the set of sets of justified sequences of nodes ordered by subset
inclusion. The function T rav�r : (CT,v) → (S,⊆) is continuous.

Proof.

Monotonicity: Let T and T ′ be two computation trees such that T v T ′ and let t be some traversal
of T . Traversals ending with a node labelled ⊥ are maximal therefore ⊥ can only occur at
the last position in a traversal. Let us prove the following two properties:

(i) If t = t · n with n 6= ⊥ then t is a traversal of T ′;

(ii) if t = t1 · ⊥ then t1 ∈ T rav(T ′).

(i) By induction on the length of t. It is trivial for the empty traversal. Suppose that t = t1 ·n
is a traversal with n 6= ⊥. By the induction hypothesis, t1 is a traversal of T ′.

We observe that for all traversal rules, the traversal produced is of the form t1 ·n where n is
defined to be a child node or value-leaf of some node m occurring in t1. Moreover, the choice
of the node n only depends on the traversal t1 (for the constant rules, this is guaranteed by
assumption (WB)).

Since T v T ′, any node m occurring in t1 belongs to T ′ and the children nodes and leaves of
m in T also belong to the tree T ′. Hence n is also present in T ′ and the rule used to produce
the traversal t of T can be used to produce the traversal t of T ′.

(ii) ⊥ can only occur at the last position in a traversal therefore t1 does not end with ⊥ and
by (i) we have t1 ∈ T rav(T ′).

Hence we have:

T rav(T)�r = {t � r | t ∈ T rav(T)}

= {(t · n) � r | t · n ∈ T rav(T) ∧ n 6= ⊥} ∪ {(t · ⊥) � r | t · ⊥ ∈ T rav(T)}

(by (i) and (ii)) ⊆ {(t · n) � r | t · n ∈ T rav(T ′) ∧ n 6= ⊥} ∪ {t � r | t ∈ T rav(T ′)}

= T rav(T ′)�r

Continuity: Let t ∈ T rav
(⋃

n∈ω Tn

)
. We write ti for the finite prefix of t of length i. The set of

traversals is prefix-closed therefore ti ∈ T rav
(⋃

n∈ω Tn

)
for any i. Since ti has finite length

we have ti ∈ T rav(Tji
) for some ji ∈ ω. Therefore we have:

t � r = (
∨

i∈ω

ti) � r (the sequence (ti)i∈ω converges to t)

=
⋃

i∈ω

(ti � r) (� r is continuous, lemma 3.1.10)

∈
⋃

i∈ω

T rav�r(Tji
) (ti ∈ T rav(Tji

))

⊆
⋃

i∈ω

T rav�r(Ti) (since {ji | i ∈ ω} ⊆ ω)

Hence T rav�r(
⋃

n∈ω Tn) ⊆
⋃

n∈ω T rav�r(Tn).

4.2. Safe PCF and Safe Idealized Algol 105

Proposition 4.2.8. Let Γ `M : T be a PCF term and r be the root of τ(M). Then:

(i) ϕM (T rav(M)∗) = 〈〈M〉〉,

(ii) ϕM (T rav(M)�r) = [[M]].

Proof. We first prove the result for PCF1: (i) The proof is an induction identical to the proof of
proposition 3.2.22. However we need to complete the case analysis with the Σ-constant cases:

• The cases succ, pred, cond and numeral constants are straightforward.

• Suppose M = Ωo then T rav(Ωo) = Pref({λ · ⊥}) therefore T rav(Ωo)
�r = Pref({λ}) and

[[Ωo]] = Pref({q}) with ϕ(λ) = q. Hence [[Ωo]] = ϕ(T rav(Ωo)
�r).

(ii) is a direct consequence of (i) and the filtering lemma (lemma 4.2.4).

We now extend the result to PCF. Let M be a PCF term, we have:

[[M]] =
⋃

n∈ω

[[Mn]] ([8], lemma 16)

=
⋃

n∈ω

T rav�r(τ(Mn)) (Mn is a PCF1 term)

= T rav�r(
⋃

n∈ω

τ(Mn)) (by continuity of T rav�r , lemma 4.2.7)

= T rav�r(τ(M)) (by definition of τ(M))

= T rav�r(M) (abbreviation).

Hence by corollary 4.2.6, ϕ defines a bijection from T rav(M)�r to [[M]]:

ϕ : T rav(M)�r
∼=−→ [[M]].

Example: succ

Consider the term M = succ 5 whose computation tree is represented below. The value-leaves
are also represented on the diagram, they are the vertices attached to their parent node with a
dashed line.

λ0

succ 0 1 . . .

λ1 0 1 . . .

5 0 1 . . .

0 1 . . .

The following sequence of nodes is a traversal of τ(M):

t = λ0 · succ · λ1 · 5 · 55 · 5λ1 · 6succ · 6λ0 .

The subsequences t∗ and t � r are given by:

t∗ = λ0 · λ1 · 5λ1 · 6λ0 . and t � r = λ0 · 6λ0 .

106 Chapter 4. Game-semantic characterisation of safety

We have ϕ(t∗) = q0 · q5 ·5q5 ·5q0 and ϕ(t � r) = q0 ·5q0 where q0 and q5 denote the roots of two flat
arenas over N. These two sequences of moves correspond to some play of the interaction semantics
and the standard semantics respectively. The interaction play is represented below:

1
5

(!N
succ

(N

q0
q5
5q5

6q0

Another example : cond

Consider the term M = λxy.cond 1 x y. Its computation tree is represented below (without the
value-leaves):

λxy

cond

λ1

1

λ2

x

λ3

y

For any value v ∈ D the following sequence of nodes is a traversal of τ(M):

t = λxy · cond · λ1 · 1 · 11 · λ
3 · y · vy · vλ3 · vcond · vλxy.

The subsequences t∗ and t � r are given by:

t∗ = t = λxy · λ1 · λ3 · y · vy · vλ3 · vλxy and t � r = λxy · y · vy · vλxy.

The sequence of moves ϕ(t∗) corresponds to some play of the interaction semantics and the se-
quence ϕ(t � r) is a play of the standard semantics obtained by hiding the internal moves of ϕ(t∗).
The interaction play ϕ(t∗) is represented below:

!N ⊗ !N
〈[[1]],π1,π2〉

(!N ⊗ !N ⊗ !N
cond

(N

q
(λxy)
0

q
(λ1)
a

1

q
(λ2)
b

q
(y)
y

vqy

vqb

vq0

Game characterisation of safe terms

A difficulty arises because of the presence of the Y combinator : computation trees of PCF terms
are potentially infinite. Despite this particularity, lemma 4.1.6 still holds in the PCF setting:

Lemma 4.2.9. If M is a safe PCF term then τ(M) is incrementally-bound.

Proof. Let i denote the number of occurrences of the Y combinator in M . We first prove by
induction on i that Mk is safe for any k ∈ ω. Base case: i = 0 then Mk = M . Step case: i > 0.
Let YAN be a subterm of M . Since M is safe, N is also safe. The number of occurrences of the Y

4.2. Safe PCF and Safe Idealized Algol 107

combinator in N is smaller than i therefore by the induction hypothesis Nk is safe. Consequently
the term Y k

ANk = Nk(. . . (Nk
︸ ︷︷ ︸

k times

Ω) . . .) is also safe and by compositionality so is Mk.

Clearly, lemma 4.1.6(i) is remains valid for infinite PCF1 terms (the subterms of the form Ω
are just represented by the constant ⊥ in the computation tree), thus since Mk is a safe PCF1

term, τ(Mk) is incrementally-bound. Now let z be a variable node in τ(M) =
⋃

k∈ω τ(Mk). There
exists k ∈ ω such that z belongs to τ(Mk) v τ(M). If we write rk to denote the root of the tree
τ(Mk) then the path [rk, z] in τ(Mk) is equal to the path [r, z] in τ(M). Hence, since the node z
is incrementally-bound in τ(Mk), it is also incrementally-bound in τ(M).

Theorem 4.2.10. Safe PCF terms are denoted by P-incrementally-justified strategies.

Proof. Let M∞ be the β-normal form of M (i.e. the possibly infinite term obtained by reducing
all the redexes in M). By lemma 4.2.1, safety is preserved by small-step reduction therefore, by
lemma 4.2.9, if M is a PCF term then τ(M∞) is also incrementally-bound.

Since condition (WB) is verified (i.e. PCF constant rules are well-behaved), lemma 3.1.23 holds
in the safe PCF setting. Thus proposition 4.1.5(i) remains valid in PCF for infinite computation
trees: infinite terms in β-nf with an incrementally-bound computation tree are denoted by P-
incrementally-justified strategies. Consequently, [[M∞]] is P-incrementally-justified. By soundness
of the game denotation, [[M∞]] = [[M]], thus [[M]] is P-incrementally-justified.

Consequently, P-pointers are superfluous in the game denotation of safe PCF terms i.e. pointers
emanating from P-moves are uniquely recoverable.

4.2.4 Safe IA

We are now in a position to consider the full safe Idealized Algol language. The general idea is the
same as for safe PCF, however there are some difficulties caused by the presence of the two new
base types var and com. We just give indications on how to adapt our framework to the particular
case of safe IA without giving the complete proofs. However we believe that enough indications
are given to convince the reader that the argument used in the PCF case can be easily adapted to
IA.

Computation DAG

In PCF, arenas have a single initial move, therefore they can be regarded as trees. In IA, on the
other hand, the base type var is represented by the infinite product of games comN × exp which
has an infinite number of initial moves. In order to preserve the relationship established between
arenas and computation trees, we need to accommodate the definition of computation tree to
reflect this property. The consequence is that in IA, “computation trees” become “computation
directed acyclic graphs (DAG)”: a computation DAG may have (possibly infinitely) many roots
and two nodes of a given level can share children at the next level.

We use the notations Dexp = N and Dcom = {done} to denote the set of value leaves of type exp
and com respectively. There are two types of value-leaves in the computation DAG: the value-leaf
done of type com and the value-leaves labelled in Dexp of type exp.

Let n be a node. If κ(n) is of type (A1, . . . An, B), we call B the return type of n. The set of
value-leaves of a node n is given by Dexp if the return type of n is exp, by Dcom if its return type
is com, and by Dexp ∪ {done} if its return type is var.

Table 4.1 shows the computation DAG for each construct of IA. The value-leaves are represented
in the DAGs using the following abbreviations:

n

Dexp

for n

0 1 2 . . .

and n

Ddone

for n

done

.

108 Chapter 4. Game-semantic characterisation of safety

A term of type var has a computation DAG with an infinite number of root λ-nodes. Suppose
that M is a term of type var, then the computation DAG for λξ.M is obtained by relabelling the
root λ-nodes λr, λw0 , λw1 , λw2 , . . . into λrξ, λw0ξ, λw1ξ, λw2ξ, For a term M of type exp or
com, the computation DAG for λξ.M is computed in the same way as in the safe λ-calculus.

Traversals

Let p be a node and suppose that its ith child n has the return type var. Then n is in fact
constituted of several λ-nodes : λrξ, λw0ξ, From p’s point of view, these nodes are referenced
as follows: i.r refers to λrξ and i.wk refers to λwkξ for k ∈ ω.

• The application rule

There are two rules (appexp) and (appcom) corresponding to traversals ending with an @-node
of return type exp and com respectively. These rules are identical to the rule exp of section
3.1.5.

The application rule for @-nodes with return type var is:

(appvar)
t · λkξ · @ ∈ T rav

t · λkξ · @ · λkη ∈ T rav

k ∈ {r, w0, w1, . . .}

0

0 0.k

• Input-variable rules

There are two rules (InputVarexp) and (InputVarcom) which are the counterparts of rule
(InputVar0) of section 3.1.5 and are defined identically.

Let x be an input-variable of type var:

(InputVarvar)
t · λrξ · x ∈ T rav

t · λrξ · x · vx ∈ T rav
(InputVar

′
var)

t · λwiξ · x ∈ T rav

t · λwiξ · x · donex ∈ T rav

• IA constants rules

The rules for new are purely structural, they are defined the same way as the rules (appexp),
(appcom) and (appdone).

The rules for deref are:

(deref)
t · deref ∈ T rav

t · deref · n ∈ T rav
1.r (deref’)

t · deref · n · t2 · vn ∈ T rav

t · deref · n · t2 · vn · vderef ∈ T rav

The rules for assign are:

(assign)
t · assign ∈ T rav

t · assign · n ∈ T rav
1

(assign’)
t · assign · n · t2 · vn ∈ T rav

t · assign · n · t2 · vn ·m ∈ T rav

2.wn

(assign”)
t · assign · t2 ·m · t3 · donem ∈ T rav

t · assign · t2 ·m · t3 · donem · doneassign ∈ T rav

2.wk

The rules for seqexp are:

(seq)
t · seq ∈ T rav

t · seq · n ∈ T rav
1

(seq’)
t · seq · n · t2 · vn ∈ T rav

t · seq · n · t2 · vn ·m ∈ T rav
2

(seq”)
t · seq · t2 ·m · t3 · vm ∈ T rav

t · seq · t2 ·m · t3 · vm · vseq ∈ T rav

2

4.2. Safe PCF and Safe Idealized Algol 109

M τ(M)

x : A ∈ {com, exp}

λ

x DA

DA

x : var

λr λw0 λw1 λw2 λw...

Dexp x done

Dexp done

skip: com

λ

skip done

done

assign L N : com

λ

assign done

τ(N : exp) τ(L : var) done

deref L : exp

λ

deref done

τ(L : var) done

seqexp N1 N2 : com

λ

seqexp Dexp

τ(N1 : com) τ(N2 : exp) done

mkvar Nw Nr : var

λr λw0 λw1 λw2 λw...

Dexp mkvar done

τ(Nr) τ(Nw) Dexp done

new x in N : A ∈ {com, exp}

λ

new x in DA

τ(N : A) DA

Tab. 4.1: Computation DAGs for the constructs of IA.

110 Chapter 4. Game-semantic characterisation of safety

The rules for mkvar are:

(mkvarr)
t · λrξ · mkvar ∈ T rav

t · λrξ · mkvar · n ∈ T rav
1

(mkvar′r)
t · mkvar · n · t2 · vn ∈ T rav

t · mkvar · n · t2 · vn · vmkvar ∈ T rav

(mkvarw)
t · λwkξ · mkvar ∈ T rav

t · λwkξ · mkvar · n ∈ T rav
2

(mkvar′′w)
t · λwkξ · mkvar · n · t2 · donen ∈ T rav

t · λwkξ · mkvar · n · t2 · donen · donemkvar ∈ T rav

These four rules are not sufficient to model the constant mkvar. Indeed, consider the term
assign (mkvar (λx.M)N)7. The rule (mkvar′′w) permits to traverse the node mkvar and to
go on by traversing the computation tree of λx.M . The problem is that when traversing
τ(M), if we reach a variable x, we are not able to relate x to the value 7 that is assigned to
the variable.

To overcome this problem, we need to define traversal rules for variable in such a way that
a variable node bound by the second child of a mkvar-node is treated differently from other
variables.

• Variable rules Let x be a non input-variable node and let b be the binder of x. b is either a
“new x in”-node or a λ-node.

– Consider the case where b is a λ-node. Take b = λx. In IA, the only constant nodes of
order greater than 1 is mkvar, therefore there are two cases: λx is either the child of a
node in N@ ∪Nvar or it is the second child of a mkvar-node.

To handle the first case, we define a rule similar to the (Var) rule of section 3.1.5 with
some modification to take into account variables x of type var(in which case x has
multiple parent λ-nodes). We do not give the details here but it is easy to see how to
redefine this rule.

To handle the case where λx is the child of a mkvar-node, we define the following rule:

(Varmkvar)
t · λwkξ · mkvar · λx · t2 · x ∈ T rav

t · λwkξ · mkvar · λx · t2 · x · kx ∈ T rav

– The case b = new x in is handle by the following rules.

We call overwrite of x relatively to an occurrence of a “new x in” node, any sequence

of nodes of the form new x in · . . . · λwkξ · x for some k ∈ Dexp and node λwkξ parent
of x.

(Varw)
t · λwkξ · x ∈ T rav

t · λwkξ · x · donex ∈ T rav
,

(Varr)
t1 · new x in · t2 · λrξ · x ∈ T rav

t1 · new x in · t2 · λrξ · x · 0x ∈ T rav
if t2 contains no overwrite of x,

(Var’r)
t1 · new x in · t2 · λrξ · x ∈ T rav

t1 · new x in · t2 · λrξ · x · kx ∈ T rav
if λwk · x is the last overwrite of x in t2.

4.2. Safe PCF and Safe Idealized Algol 111

Game semantics correspondence

The properties that we proved for computation trees and traversals of the safe λ-calculus with
constants can easily be lifted to computation DAGs of IA. In particular:

• constant traversal rules are well-behaved;

• P-view of traversals are paths in the computation DAG;

• the P-view of the reduction of a traversal is the reduction of the P-view, and the O-view of
a traversal is the O-view of its reduction (lemma 3.1.23);

• there is a mapping from vertices of the computation DAG to moves in the interaction game
semantics;

• there is a correspondence between traversals of the computation tree and plays in interaction
game semantics;

• consequently, there is a correspondence between the standard game semantics and the set
of justified sequences of nodes T rav�r.

Game-semantic characterisation of safe terms

Clearly, the computation DAG of a safe term is incrementally-bound. By using the correspondence
between traversals and plays, it is easy to prove that incrementally-bound computation trees are
denoted by P-incrementally-justified strategies. Consequently, by lemma 4.1.2, P’s pointers are
superfluous in the game semantics of safe IA terms.

Since the game denotation of an IA term is fully determined by the set of complete plays, this
pointer economy suggests that the game denotation of a safe IA can be represented in a compact
way. This raises the question of the decidability of observational equivalence for safe IA.

112 Chapter 4. Game-semantic characterisation of safety

Chapter 5

FURTHER POSSIBLE DEVELOPMENTS

In the previous chapter, we have given an account of the game semantics of safe λ-calculus.
However the nature of this calculus is still not well known. We propose the following possible
roadmap for further research:

1. give a detailed account of P-incrementally-justified strategies that treats the problem of
compositionality;

2. find a categorical interpretation of the safe λ-calculus;

3. study the proof theory obtained by the Curry-Howard isomorphism and determine whether
it has nice properties that can be helpful in theorem proving;

4. identify a non-trivial fragment of safe IA for which observational equivalence is decidable;

5. in [38], the λ-calculus is used to give several characterisations of the complexity class P.
We would like to investigate whether, by following similar techniques, we can obtain a
characterisation of a different complexity class using the safe λ-calculus.

More generally, we would like to study the class of languages for which pointers are uniquely
recoverable. We name this class PUR for “Pointer Uniquely Recoverable”.

An example is the Serially Re-entrant Idealized Algol (SRIA) proposed by Abramsky in [2].
This language allows multiple occurrences or uses of arguments, as long as they do not overlap in
time. In the game semantics denotation of a SRIA term there is at most one pending occurrence of
a question at any time. Each move has therefore a unique justifier and consequently justification
pointers may be ignored. Safe IA is not a sublanguage of SRIA. One reason for this is that
none of the two Kierstead terms λf.f(λx.f(λy.y)) and λf.f(λx.f(λy.x)) are Serially Re-entrant
whereas the first one is safe. Conversely, SRIA is not a sublanguage of safe IA since the term
λfg.f(λx.g(λy.x)) where f, g : ((o, o), o) belongs to SRIA but not to safe IA.

Finitary IA2 is also an example of PUR-language for which observational equivalence is decid-
able. As we indicated in the first chapter, decidability of observational equivalence is a very appeal-
ing property which has immediate applications in the domain of program verification. Intuitively,
PUR-languages seem to be good candidates of languages for which observational equivalence is
decidable. It would be interesting to discover classes of PUR languages having this appealing
property. Safe IA3 seems to be a good candidate.

Another possible way to generate PUR-languages may be to constrain the types of an existing
language. In [33], a notion of “complexity” is defined for λ-terms. It is proved that a type T
can be generated from a finite set of combinators if and only if there is a constant bounding
the complexity of every closed normal λ-term of type T ; consequently, the only inhabited finitely
generated types are the type of rank ≤ 2 and the types (A1, A2, . . . , An, o) such that for all i = 1..n:
Ai = o , Ai = o → o or Ai = (ok → o) → o. We know that imposing the first of these two type
restrictions to Finitary IA leads to a PUR language. Is it also the case when imposing the second
type restriction?

114 Chapter 5. Further possible developments

BIBLIOGRAPHY

[1] Samson Abramsky. Algorithmic game semantics: a tutorial introduction. 2001.

[2] Samson Abramsky. Semantics via game theory. In Marktoberdorf International Summer
School, 2001. Lecture slides.

[3] Samson Abramsky and Radha Jagadeesan. A game semantics for generic polymorphism.
Ann. Pure Appl. Logic, 133(1-3):3–37, 2005.

[4] Samson Abramsky and Radha Jagadeesan. Games and full completeness for multiplicative
linear logic. In R. Shyamasundar, editor, Foundations of Software Technology and Theoretical
Computer Science (FST-TCS’92), pages 291–301, New Delhi, India, 1992. URL citeseer.

ist.psu.edu/article/abramsky94games.html.

[5] Samson Abramsky and Guy McCusker. Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In P. W. O’Hearn and R. D. Tennent,
editors, Algol-like languages. Birkhaüser, 1997.

[6] Samson Abramsky and Guy McCusker. Call-by-value games. In Mogens Nielsen and Wolf-
gang Thomas, editors, Computer Science Logic: 11th International Workshop Proceedings.
Springer-Verlag, 1998. URL citeseer.ist.psu.edu/abramsky97callbyvalue.html.

[7] Samson Abramsky and Guy McCusker. Full abstraction for Idealized Algol with passive
expressions. Theoretical Computer Science, 227(1–2):3–42, 1999. URL citeseer.ist.psu.

edu/abramsky98full.html.

[8] Samson Abramsky and Guy McCusker. Game semantics. In H. Schwichtenberg and U. Berger,
editors, Logic and Computation: Proceedings of the 1997 Marktoberdorf Summer School.
Springer-Verlag, 1998. Lecture notes.

[9] Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan. Full abstraction for PCF. In
Theoretical Aspects of Computer Software, pages 1–15, 1994. URL citeseer.ist.psu.edu/

abramsky95full.html.

[10] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics for
general references. In LICS, pages 334–344, 1998.

[11] Klaus Aehlig, Jolie G. de Miranda, and C.-H. Luke Ong. Safety is not a restriction at level 2
for string languages. Technical report, University of Oxford, 2004.

[12] Klaus Aehlig, Jolie G. de Miranda, and C.-H. Luke Ong. Safety is not a restriction at level 2
for string languages. In Sassone [56], pages 490–504. ISBN 3-540-25388-2.

[13] Andrea Asperti, Vincent Danos, Cosimo Laneve, and Laurent Regnier. Paths in the lambda-
calculus. In LICS, pages 426–436. IEEE Computer Society, 1994.

[14] Gérard Berry. Stable models of typed lambda-calculi. In Proceedings of the Fifth Colloquium
on Automata, Languages and Programming, pages 72–89, London, UK, 1978. Springer-Verlag.
ISBN 3-540-08860-1.

116 BIBLIOGRAPHY

[15] Gérard Berry. Modèles Complément Adéquats et Stable des Lambda-calculs typés. Phd thesis,
Université Paris VII, 1979.

[16] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. Lecture Notes in Computer Science, 1579:193–207, 1999. URL
citeseer.ist.psu.edu/article/biere99symbolic.html.

[17] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In
Proc. International Conference on Computer-Aided Verification (CAV 2002), volume 2404 of
LNCS, Copenhagen, Denmark, July 2002. Springer.

[18] Roy Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge University
Press, 1993. ISBN 0521450926.

[19] W. Damm. The IO- and OI-hierarchy. TCS, 20:95–207, 1982.

[20] Vincent Danos and Laurent Regnier. Local and asynchronous beta-reduction (an analysis of
girard’s execution formula). In Moshe Vardi, editor, Proceedings of the Eighth Annual IEEE
Symp. on Logic in Computer Science, LICS 1993, pages 296–306. IEEE Computer Society
Press, June 1993.

[21] Jolie G. de Miranda. Structures generated by higher-order grammars and the safety constraint.
Forthcoming, University of Oxford, 2006.

[22] Aleksandar Dimovski, Dan R. Ghica, and Ranko Lazic. Data-abstraction refinement: A game
semantic approach. In Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of Lecture
Notes in Computer Science, pages 102–117. Springer, 2005. ISBN 3-540-28584-9.

[23] Dan R. Ghica and Guy McCusker. Reasoning about idealized algol using regular languages.
In Proceedings of 27th International Colloquium on Automata, Languages and Programming
ICALP 2000, volume 1853 of LNCS, pages 103–116. Springer-Verlag, 2000. URL citeseer.

ist.psu.edu/ghica00reasoning.html.

[24] Will Greenland. Game Semantics for Region Analysis. PhD thesis, University of Oxford,
2004.

[25] Moritz Hammer, Alexander Knapp, and Stephan Merz. Truly on-the-fly LTL model checking.
In Nicolas Halbwachs and Lenore Zuck, editors, 11th Intl. Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2005), Lecture Notes in Computer Science,
pages 191–205, Edinburgh, Scotland, April 2005. Springer-Verlag.

[26] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 26(1):100–106, 1983.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/357980.358021.

[27] Kohei Honda and Nobuko Yoshida. Game-theoretic analysis of call-by-value computa-
tion. Theoretical Computer Science, 221(1–2):393–456, 1999. URL citeseer.ist.psu.edu/

article/honda97game.html.

[28] Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci., 1
(1):27–57, 1975.

[29] Gérard P. Huet. Résolution d’équations dans des langages d’ordre 1,2,...,ω. Thèse de doctorat
es sciences mathématiques, Université Paris VII, Septembre 1976.

[30] J. M. E. Hyland and C.-H. L. Ong. Fair games and full completeness for Multiplicative Linear
Logic without the MIX-rule. preprint, 1993.

BIBLIOGRAPHY 117

[31] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Information
and Computation, 163(2):285–408, December 2000. ISSN 0890-5401. doi: http://dx.doi.org/
10.1006/inco.2000.2917.

[32] D. C. Jensen and Tomasz Pietrzykowski. Mechanizing mega-order type theory through uni-
fication. Theor. Comput. Sci., 3(2):123–171, 1976.

[33] Thierry Joly. The finitely generated types of the lambda-calculus. In TLCA, pages 240–252,
2001.

[34] N.D. Jones and N. Bohr. Termination of the untyped lambda calculus. 2004.

[35] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are easy. In FOS-
SACS’02, pages 205–222. Springer, 2002. LNCS Vol. 2303.

[36] John Lamping. An algorithm for optimal lambda calculus reduction. In POPL ’90: Pro-
ceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 16–30, New York, NY, USA, 1990. ACM Press. ISBN 0-89791-343-4. doi:
http://doi.acm.org/10.1145/96709.96711.

[37] C.S. Lee, N.D. Jones, and A. M. Ben-Amram. The size-change principle for program termi-
nation. 2001.

[38] Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations of poly-time. In
Marc Bezem and Jan Friso Groote, editors, TLCA, volume 664 of Lecture Notes in Computer
Science, pages 274–288. Springer, 1993. ISBN 3-540-56517-5.

[39] Paul Lorenzen. Ein dialogisches konstruktivitätskriterium. In Warsaw PWN, editor, Infini-
tistic Methods., pages 193–200, 1961.

[40] Guy McCusker. Games and Full Abstraction for a Functional Metalanguage with Recursive
Types. PhD thesis, Imperial College, 1996.

[41] Guy McCusker. On the semantics of idealized algol without the bad-variable constructor.
In ENTCS, editor, Nineteenth Conference on the Mathematical Foundations of Programming
Semantics, volume 83. Elsevier, 2003.

[42] Kenneth L. McMillan. Interpolation and sat-based model checking. In Warren A. Hunt Jr.
and Fabio Somenzi, editors, CAV, volume 2725 of Lecture Notes in Computer Science, pages
1–13. Springer, 2003. ISBN 3-540-40524-0.

[43] Andrzej S. Murawski. Games for complexity second-order call-by-name programs. Theoretical
Computer Science, 2005. special issue: Game Theory meets Computer Science, accepted for
publication.

[44] Andrzej S. Murawski. On program equivalence in languages with ground-type references,
2003. URL citeseer.ist.psu.edu/murawski03program.html.

[45] Andrzej S. Murawski and Igor Walukiewicz. Third-order idealized algol with iteration is
decidable. In Sassone [56], pages 202–218. ISBN 3-540-25388-2. URL "http://www.labri.

fr/publications/l3a/2005/MW05".

[46] Andrzej S. Murawski, C.-H. Luke Ong, and Igor Walukiewicz. Idealized algol with ground
recursion, and dpda equivalence. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia
Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer
Science, pages 917–929. Springer, 2005. ISBN 3-540-27580-0.

[47] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, pages 502–518, 2003.

118 BIBLIOGRAPHY

[48] Hanno Nickau. Hereditarily sequential functionals. In Anil Nerode and Yu. V. Matiyase-
vich, editors, Proc. Symp. Logical Foundations of Computer Science: Logic at St. Petersburg,
volume 813 of Lecture Notes in Computer Science, pages 253–264. Springer-Verlag, 1994.

[49] C.-H. L. Ong. Observational equivalence of third-order Idealized Algol is decidable. In
Proceedings of IEEE Symposium on Logic in Computer Science, 22-25 July 2002, Copenhagen
Denmark, pages 245–256. Computer Society Press, 2002.

[50] C.-H. L. Ong. Safe lambda calculus: Some questions. Note on the safe lambda calculus.,
December 2005.

[51] C.-H. L. Ong. On model-checking trees generating by higher-order recursion schemes (techni-
cal report). URL http://users.comlab.ox.ac.uk/luke.ong/publications/ntrees.pdf.
Preprint, 42 pp, 2006.

[52] C.-H. L. Ong. On model-checking trees generating by higher-order recursion schemes. In
Proceedings of IEEE Symposium on Logic in Computer Science. Computer Society Press,
2006. Extended abstract.

[53] Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5(3):
225–255, 1977.

[54] Princeton University. zchaff. http://www.princeton.edu/~chaff/zchaff.html.

[55] John C. Reynolds. The essence of algol. In J. W. de Bakker and J. C. van Vliet, editors,
Algorithmic Languages, pages 345–372. IFIP, North-Holland, Amsterdam, 1981.

[56] Vladimiro Sassone, editor. Foundations of Software Science and Computational Structures,
8th International Conference, FOSSACS 2005, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005,
Proceedings, volume 3441 of Lecture Notes in Computer Science, 2005. Springer. ISBN 3-540-
25388-2.

[57] Dana S. Scott. A type-theoretical alternative to iswim, cuch, owhy. Theor. Comput. Sci., 121
(1-2):411–440, 1993. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(93)90095-B.

[58] Dana S. Scott. A theory of computable function of higher type. Unpublished seminar notes,
University of Oxford, 1969.

[59] Géraud Sénizergues. L(A)=L(B)? decidability results from complete formal systems. Theor.
Comput. Sci., 251(1-2):1–166, 2001.

[60] Damien Sereni. Simply typed λ-calculus and sct. 2005.

[61] Colin Stirling. Deciding dpda equivalence is primitive recursive. In ICALP ’02: Proceedings
of the 29th International Colloquium on Automata, Languages and Programming, pages 821–
832, London, UK, 2002. Springer-Verlag. ISBN 3-540-43864-5.

[62] W. Thomas. Languages, automata, and logic, 1997. URL citeseer.ist.psu.edu/205184.

html.

