The Safe A\-Calculus

William Blum and C.-H. Luke Ong

Oxford University Computing Laboratory

TLCA 2007

Overview

> Safety is originally a syntactic restriction for higher-order
grammars with nice automata-theoretic characterization.

> In the context of the A-calculus it gives rise to the Safe
A-calculus.

> The loss of expressivity can be characterized in terms of
representable numeric functions.

» The calculus has a “succinct” game-semantic model.

Outline for this talk

ARl R

The safety restriction for higher-order grammars
The safe A-calculus

Expressivity

Game-semantic characterization

Safe PCF, Safe IA

Higher-order grammars
Notation for types: A1 — (A2 — (... (An — 0))...) is written
(Al, A2, e ,An, O).
» Higher-order grammars are used as generators of word
languages (Maslov, 1974), trees (KNUO1) or graphs.

» A higher-order grammar is formally given by a tuple
(X, N,R,S) (terminals, non-terminals, rewritting rules, starting

symbol)
» Example of a tree-generating order-2 grammar:
/g\
S — Ha a /g\
Hz° — F(gz) a h
Foleo) — o(o(Fh) h

Non-terminals: S : o, H: (0,0) and F : ((o,o),-o).
Terminals: a: o0 and g, h: (o0,0).

The Safety Restriction

» First appeared under the name “restriction of derived types” in
“I0 and Ol Hierarchies” by W. Damm, TCS 1982

» It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.

The Safety Restriction

» First appeared under the name “restriction of derived types” in
“I0 and Ol Hierarchies” by W. Damm, TCS 1982

» It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.

» (A1,---,Ap,0) is homogeneous if Ay, ..., A, are, and
ord Ay > ord Ay > --- > ord A,.

Definition (Knapik, Niwiriski and Urzyczyn (2001-2002))

All types are assumed to be homogeneous.

An order k > 0 term is unsafe if it contains an occurrence of a
parameter of order strictly less than k. An unsafe subterm t of t/
occurs in safe position if it is in operator position (t' = ---(ts)---).
A grammar is safe if at the right-hand side of any production all
unsafe subterms occur in safe positions.

Safe grammars: examples

Take h:0o—0,g:0—0—0,a:o0.
The following grammar is unsafe:

S — Ha
Hz° — F(gz)
Foloo) — o(o(Fh)

Safe grammars: examples

Take h:0o—0,g:0—0—0,a:o0.
The following grammar is unsafe:

S — Ha
Hz° — F(gz)
Foloo — (s(Fh)

It is equivalent to the following safe grammar:

S — F(ga)
Folo) — ¢(¢(F h))

Some Results On Safety

Damm82
KNUO02

KNUO02

Ong06
Caucal02

HMOS06

AdMO04

For generating word languages, order-n safe grammars
are equivalent to order-n pushdown automata.

Generalization of Damm'’s result to tree generating safe
grammars/PDAs.

The Monadic Second Order (MSO) model checking
problem for trees generated by safe higher-order
grammars of any order is decidable.

But anyway, KNUOQ2 result's is also true for unsafe
grammars...

Graphs generated by safe grammars have a decidable
MSO theory.

Caucal's result does not extend to unsafe grammars.
However deciding p-calculus theories is n-EXPTIME
complete.

Proposed a notion of safety for the A-calculus
(unpublished).

Simply Typed A-Calculus

v

Simple types A:=0 | A — A.

v

The order of a type is given by order(o) =0,
order(A — B) = max(order(A) + 1, order(B)).

Jugdements of the form ' = M : T where I is the context, M is
the term and T is the type:

v

r’'EM: A
var) o arxa W aryalcl
(app) [T MAZB TENA L Tx AEM:B
app - MN:B P TEMAM:-A= B

0—o0,,0

Example: f:0— 0 — o0,x:0F (Ap°°x°.¢ x)(f x)
A single rule: [-reduction. e.g. (Ax.M)N —g M[N/x]

v

v

The Safe A-Calculus

The formation rules

FrM=sM: A
_— k) ————TTCA
(or) e arixa M armalc
(a)I'I—M:(Al,...,A,,B) I'I—SN1:A1 I‘I—SN,:A,
PP [MN,...N,: B
with the side-condition Vy € [: ordy > ord B
r AL Xyt ApEs M B
(abs) ?X]. 1 X S

MEsAxg AL .. xp :Ap M A — ... A, — B

with the side-condition Vy € I :ordy > ordA; — ... — A, — B

Lemma
IfT Fs M : A then every free variable in M has order at least ord A.

v

The Safe A-Calculus : examples

> Some examples of safe terms: Ax.x, Axy.x, Axy.y.

The Safe A-Calculus : examples

> Some examples of safe terms: Ax.x, Axy.x, Axy.y.

» Up to order 2, B-normal terms are always safe.

The Safe A-Calculus : examples

> Some examples of safe terms: Ax.x, Axy.x, Axy.y.
» Up to order 2, B-normal terms are always safe.

» The two Kierstead terms (order 3). Only one of them is safe:

AF(20)0) £(Ax® F(Ay°.y))
AF((2:0)0) £(Ax°.F(Ay°.x))

The Safe A-Calculus : examples

> Some examples of safe terms: Ax.x, Axy.x, Axy.y.
» Up to order 2, B-normal terms are always safe.

» The two Kierstead terms (order 3). Only one of them is safe:

AF(20)0) £(Ax® F(Ay°.y))
AF((2:0)0) £(Ax°.F(Ay°.x))

» An example of safe term not in 3-normal form:

(A 7°x%0 x)(Ay°.y)

Variable Capture
The usual “problem” in A-calculus: avoid variable capture when
performing substitution: (Ax.(Ay.x))y —g (Ay.x)[y/x] # Ay.y

Variable Capture
The usual “problem” in A-calculus: avoid variable capture when
performing substitution: (Ax.(Ay.x))y —g (Ay.x)[y/x] # Ay.y
1. Standard solution: Barendregt's convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (Ax.(Ay.x))y becomes (Ax.(Az.x))y which
reduces to (Az.x)[y/x] = A\z.y

Variable Capture

The usual “problem” in A-calculus: avoid variable capture when
performing substitution: (Ax.(Ay.x))y —g (Ay.x)[y/x] # Ay.y
1. Standard solution: Barendregt's convention. Variables are

renamed so that free variables and bound variables have
different names. Eg. (Ax.(Ay.x))y becomes (Ax.(Az.x))y which
reduces to (Az.x)[y/x] = A\z.y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of 3-reductions.

Variable Capture
The usual “problem” in A-calculus: avoid variable capture when
performing substitution: (Ax.(Ay.x))y —g (Ay.x)[y/x] # Ay.y
1. Standard solution: Barendregt's convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (Ax.(Ay.x))y becomes (Ax.(Az.x))y which
reduces to (Az.x)[y/x] = A\z.y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of 3-reductions.
2. Another solution: use the A-calculus a la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.

Variable Capture
The usual “problem” in A-calculus: avoid variable capture when
performing substitution: (Ax.(Ay.x))y —g (Ay.x)[y/x] # Ay.y
1. Standard solution: Barendregt's convention. Variables are

renamed so that free variables and bound variables have
different names. Eg. (Ax.(Ay.x))y becomes (Ax.(Az.x))y which
reduces to (Az.x)[y/x] = A\z.y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of 3-reductions.

2. Another solution: use the A-calculus a la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.

Drawback: the conversion to nameless de Brujin A-terms
requires an unbounded supply of indices.

Variable Capture
The usual “problem” in A-calculus: avoid variable capture when
performing substitution: (Ax.(Ay.x))y —g (Ay.x)[y/x] # Ay.y
1. Standard solution: Barendregt's convention. Variables are

renamed so that free variables and bound variables have
different names. Eg. (Ax.(Ay.x))y becomes (Ax.(Az.x))y which
reduces to (Az.x)[y/x] = A\z.y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of 3-reductions.

2. Another solution: use the A-calculus a la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.

Drawback: the conversion to nameless de Brujin A-terms
requires an unbounded supply of indices.

Property

In the Safe A-calculus there is no need to rename variables when
performing substitution.

Variable capture: examples

1. Contracting the -redex in the following term
f:o—0—o0,x:0F (Ap° °x°p x)(f x)
leads to variable capture:

(Apx.p x)(f x) A5 (Ax.(f x)x).

Variable capture: examples

1. Contracting the -redex in the following term
f:o—0—o0,x:0F (Ap° °x°¢p x)(f x)
leads to variable capture:

(Apx.p x)(f x) A5 (Ax.(f x)x).

Hence the term is unsafe. Indeed, ordx =0<1=ordf x.

Variable capture: examples

1. Contracting the -redex in the following term
f:o—0—o0,x:0F (Ap° °x°¢p x)(f x)
leads to variable capture:

(Apx.p x)(f x) A5 (Ax.(f x)x).

Hence the term is unsafe. Indeed, ordx =0<1=ordf x.
2. The term (Ap°°x°. x)(Ay°.y) is safe.

Variable capture: examples

1. Contracting the -redex in the following term
f:o—0—o0,x:0F (Ap° °x°¢p x)(f x)
leads to variable capture:

(Apx.p x)(f x) A5 (Ax.(f x)x).

Hence the term is unsafe. Indeed, ordx =0<1=ordf x.

2. The term (Ap°°x°. x)(Ay°.y) is safe.

3. The unsafe term Ay°z°.(Ax°.y)z can be contracted without
renaming variables. Hence not all terms whose (3-contraction
can be correctly implemented by capture permitting
substitution, are safe.

Transformations preserving safety

» Substitution preserves safety.

Transformations preserving safety

» Substitution preserves safety.

» (-reduction does not preserve safety: Take w,x,y,z: o0 and
f:(0,0,0). The safe term (Axy.f x y)z w (-reduces to the
unsafe term (Ay.f z y)w which in turns reduces to the safe
term f z w.

Transformations preserving safety

» Substitution preserves safety.

» (-reduction does not preserve safety: Take w,x,y,z: o0 and
f:(0,0,0). The safe term (Axy.f x y)z w (-reduces to the
unsafe term (Ay.f z y)w which in turns reduces to the safe
term f z w.

» Safe (B-reduction: reduces simultaneously as many (G-redexes as
needed in order to reach a safe term.

» Safe (-reduction preserves safety.

Transformations preserving safety

» Substitution preserves safety.

» (-reduction does not preserve safety: Take w,x,y,z: o0 and
f:(0,0,0). The safe term (Axy.f x y)z w (-reduces to the
unsafe term (Ay.f z y)w which in turns reduces to the safe
term f z w.

» Safe (B-reduction: reduces simultaneously as many (G-redexes as
needed in order to reach a safe term.

» Safe (-reduction preserves safety.

» n-reduction preserves safety.

Transformations preserving safety

» Substitution preserves safety.

» (-reduction does not preserve safety: Take w,x,y,z: o0 and
f:(0,0,0). The safe term (Axy.f x y)z w (-reduces to the
unsafe term (Ay.f z y)w which in turns reduces to the safe
term f z w.

» Safe (B-reduction: reduces simultaneously as many (G-redexes as
needed in order to reach a safe term.

» Safe (-reduction preserves safety.

» n-reduction preserves safety.

> n-expansion does not preserve safety.
E.g. Fs Ay°z°.y:(0,0,0) but t/s Ax°.(Ay°z°.y)x : (0, 0, 0).

Transformations preserving safety

» Substitution preserves safety.

» (-reduction does not preserve safety: Take w,x,y,z: o0 and
f:(0,0,0). The safe term (Axy.f x y)z w (-reduces to the
unsafe term (Ay.f z y)w which in turns reduces to the safe
term f z w.

» Safe (B-reduction: reduces simultaneously as many (G-redexes as
needed in order to reach a safe term.

» Safe (-reduction preserves safety.
» n-reduction preserves safety.

> n-expansion does not preserve safety.
E.g. Fs Ay°z°.y:(0,0,0) but t/s Ax°.(Ay°z°.y)x : (0, 0, 0).

» 7-long normal expansion preserves safety.

Expressivity

Safety is a strong constraint but it is still unclear how it restricts
expressivity:
» de Miranda and Ong showed that at order 2 for word languages,

non-determinism palliates the loss of expressivity. It is unknown
if this extends to higher orders.

» For tree-generating grammars: Urzyczyn conjectured that safety
is a proper constraint i.e. that there is a tree which is
intrinsically unsafe. He proposed a possible counter-example.

» For graphs, HMOSO06's undecidability result implies that safety
restricts expressivity.

» For simply-typed terms: ...

Numerical functions

Church Encoding: for n € N, n = Asz.s"z of type
I=(0o—0)—o0—o.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type
| — ... — | are exactly the multivariate polynomials extended with
the conditional function:

x, ift=0

cond(t,x,y) = { y, ift=n+1.

Numerical functions (2)

Let n,me N.

» Natural number: 7 = Asz.s"z: (0 — 0) — o0 — o. Safe.

Numerical functions (2)

Let n,me N.
» Natural number: 7 = Asz.s"z: (0 — 0) — o0 — o. Safe.

» Addition: n+ m = \a(>9)x°.(Aa)(Max). Safe.

Numerical functions (2)

Let n,me N.
» Natural number: 7 = Asz.s"z: (0 — 0) — o0 — o. Safe.
» Addition: n+ m = \a(>9)x°.(Aa)(Max). Safe.

» Multiplication: 7.m = Aa(%°) 7 (M). Safe.

Numerical functions (2)

Let n,me N.
» Natural number: 7 = Asz.s"z: (0 — 0) — o0 — o. Safe.
» Addition: n+ m = \a(>9)x°.(Aa)(Max). Safe.
» Multiplication: 7.m = Aa(%°) 7 (M). Safe.
» Conditional: C = AFGHax.H(\y.Gax)(Fax). Unsafe.

Numerical functions (2)

Let n,me N.
» Natural number: 7 = Asz.s"z: (0 — 0) — o0 — o. Safe.
» Addition: n+ m = \a(>9)x°.(Aa)(Max). Safe.
» Multiplication: 7.m = Aa(%°) 7 (M). Safe.
» Conditional: C = AFGHax.H(\y.Gax)(Fax). Unsafe.
In fact:

Theorem

Functions representable by safe \-expressions of type | — ... — |
are exactly the multivariate polynomials.

Game semantics

Model of programming languages based on games (Abramsky et al;
Hyland and Ong; Nickau)

>

| 2

2 players: Opponnent (system) and Proponent (program)

The term type induces an arena defining the possible moves
[NlI= gq [N—NJ = q°
N RIANN

q 1

/|
Play = justified sequence of moves played alternatively by O
and P with justification pointers.

Strategy for P = prefix-closed set of plays. sab in the strategy
means that P should respond b when O plays a in position s.

The denotation of a term M, written [M], is a strategy for P.

> [7:N] ={e.q,q7}

[succ : N — N] = Pref({q°q*n(n+ 1) | n € N})
Compositionality: [succ 7] = [succ]; [7]

Game-semantic Characterization of Safety

The variable binding restriction imposed by the safety constraint
implies:

Theorem
> Safe terms are denoted by P-incrementally justified strategies:
each P-move m points to the last O-move in the P-view with
order > ord m.
> Conversely, if a closed term is denoted by a P-incrementally
justified strategy then its n-long B-normal form is safe.

Game-semantic Characterization of Safety

The variable binding restriction imposed by the safety constraint
implies:

Theorem
> Safe terms are denoted by P-incrementally justified strategies:
each P-move m points to the last O-move in the P-view with
order > ord m.
> Conversely, if a closed term is denoted by a P-incrementally
justified strategy then its n-long B-normal form is safe.

Corollary
Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.

Safe PCF

» PCF = A~ with base type N + successor, predecessor,
conditional + Y combinator

» Safe PCF = Safe fragment of PCF

Proposition
Safe PCF terms are denoted by P-i.j. strategies.

The first fully-abstract models of PCF were based on game
semantics (Abramsky et al., Hyland and Ong, Nickau).

Question: Are P-i.j. strategies, suitably quotiented, fully abstract for
Safe PCF?

|dealized Algol (IA) : Open problem

» |IA = PCF + block-allocated variables + imperative features
» Introduced by John Reynolds, 1997.

> IA; + Y;: fragment of IA with finite base type, terms of order
< i, recursion limited to order j

Two IA terms are equivalent iff the two sets of complete plays of the
game denotations are equal [Abramsky,McCusker].

» /Ay the set of complete plays is regular [Ghica&McCusker00].
» IA3 + Yy: DPDA definable [Ong02].

> /A3 + while: Visibly Pushdown Automaton definable
[Murawski&Walukievicz05].

Hence observational equivalence is decidable for all these fragments.
However at order 4, observational equivalence is undecidable
[Mur05].

Question: Is observational equivalence decidable for the safe
fragment of [A47

Conclusion and Future Works

Conclusion:
Safety is a syntactic constraint with interesting algorithmic and
game-semantic properties.
Future work:
» What is a (categorical) model of the safe lambda calculus?

» Can we obtain a fully abstract model of Safe PCF (with respect
to safe contexts)?

» Complexity classes characterized with the Safe A-calculus?

> Safe ldealized Algol: is contextual equivalence decidable for
some finitary fragment (e.g. Safe 1A4) (with respect to all/safe
contexts) ?

Related works:
» Jolie G. de Miranda’s thesis on safe/unsafe grammars.

» Ong introduced computation trees in LICS2006 to prove
decidability of MSO theory on infinite trees generated by
higher-order grammars (whether safe or not).

	Title page
	Overview
	Outline for this talk
	Higher-order grammars
	The Safety Restriction
	Safe grammars: examples
	Some Results On Safety
	Simply Typed Lambda-Calculus
	The Safe Lambda-Calculus
	The Safe Lambda-Calculus : examples
	Variable Capture
	Variable capture: examples
	Transformations preserving safety
	Expressivity
	Numerical functions
	Numerical functions (2)
	Game semantics
	Game-semantic Characterization of Safety
	Safe PCF
	Idealized Algol : Open problem
	Conclusion and Future Works

