
Type homogeneity is not a restriction for safe

recursion schemes

William Blum

June 23, 2009

Abstract

We show that for generating trees, order-n pushdown automata are
equivalent to order-n incrementally-bound recursion schemes. This gener-
alizes Knapik et al.’s result about equi-expressivity of pushdown automata
and safe (i.e., incrementally-bound and homogeneously-typed) recursion
schemes [5].

NB: A proof attempt was presented in a previous version of this note.
Broadbent has then obtained a working proof based on the same idea but
using a different notion of stack-safety [2]. This note fixes the hole in my
original proof by introducing yet another definition of stack safety inspired
by Broadbent’s one.

1 Introduction

Hague, Murawski, Ong and Serre [4] introduced higher-order collapsible push-
down automata (CPDA). They prove that this type of device is equivalent
to higher-order recursion schemes: given an order-n recursive schemes G we
can construct an equivalent order-n CPDA (in the sense that they generate
the same tree), and conversely. Here we show that if the recursion scheme
is incrementally-bound then the generated automaton can easily be changed
into an equivalent order-n (non-collapsible) push-down automaton (PDA). Con-
versely, given an order-n PDA, the recursion scheme generated by Hague et al.’s
transformation induces an equivalent incrementally-bound and homogeneously-
typed recursion scheme.

Consequently, pushdown automata are equivalent to incrementally-bound
recursion schemes. Further, by applying the above two transformations, every
incrementally-bound recursion scheme can be converted to an equivalent safe
one (i.e., incrementally-bound and type-homogeneous). Type-homogeneity is
therefore not a proper restriction for safe recursion schemes. This generalizes
Knapik et al.’s results about equi-expressivity of pushdown automata and safe
recursion schemes [5].

2 Notations

Stack An element of the CPDA stack is written a(j,k) where a ∈ Γ and the
exponent (j, k) encodes the pointer associated to the stack symbol. The value

1

j is called the order of the link, and k is called the height of the link. We use
the following abbreviations:

• “pusha,j1 ” for the operation push1 a
(j,1);

• “pusha1” for the operation push1 a
(j,k) where the components j and k are

undetermined.

Given an order-n CPDA, we call configuration an order-n stack.

�

Add definition of stack prefix “s6m” and “s<m” [4].

Definition 2.1. Let s be a higher-order stack. We define s〈j〉 as the operation
that replaces every link occurring in s of the form (j, k) by (j, k+ 1). Formally,

a(j,k)〈j〉 = a(j,k+1)

a(j,k)〈j
′〉

= a(j,k) when j 6= j′,

[s1 . . . sp]〈j〉 = [s〈j〉1 . . . s〈j〉p] .

This operation clearly commutes with prefixing. We will therefore write s〈j〉6m

as an abbreviation for (s〈j〉)6m = (s6m)〈j〉, for all stack s and stack-symbol m
occurring in s.

We reproduce here the definition of the CPDA operation pushj [4]:

pushj [s1 . . . sl+1]︸ ︷︷ ︸
s

=
{

[s1 . . . sl+1 s
〈j〉
l+1] if j = ord s;

[s1 . . . sl+1 pushj sl+1] if j < ord s.

Convention 2.1 (Top stack convention). In the original definition, the operation
topi, that returns the top (i − 1)-stack of a higher-order stack, removes any
dangling pointer resulting from the operation. Here, we suppose that topi is
defined in such a way that all pointers are preserved. From an implementation
viewpoint, since links are encoded as pairs of integers, this means that topi just
returns an unmodified copy of the top (i− 1)-stack.

Recursion schemes

� Add definition of recursion scheme, type-homogeneity, and
incremental bound computation tree/graph[1].

A recursion scheme is incrementally-bound just if its computation graph
is incrementally-bound. A recursion scheme is safe if it is incrementally-bound
and homogeneously-typed.

3 From recursion scheme to collapsible push-
down automaton

We fix a higher-order recursion scheme G of order n.

2

Presentation Hague et al. define an order n collapsible pushdown automa-
ton, denoted CPDA(G), constructed from the recursion scheme G [3, Definition
5.2]. They show that this automaton is equivalent to G in the sense that it gen-
erates the same tree. The stack-alphabet Γ is given by the set of nodes of the
computation graph of G (derived from the long eta-expansion of its rules). The
automaton proceeds by computing the set of traversals of the computation tree
of G. One can easily transform CPDA(G) into an automaton that “prints out”
the traversal that is being computed. This can be done by changing the be-
haviour of the push1 operation to make it print out the input element before
pushing it on the stack. The justification pointers can then be recovered induc-
tively using the node labels: For a variable node, it is the only node-occurrence
that binds it in the P-view at that point (which is computable by the induction
hypothesis); prime lambda nodes always point to their immediate predecessor;
and a non-prime lambda node is always justified by the predecessor of the jus-
tifier of the variable node preceding it.

The stack of the current configuration does not suffice in itself to reconstruct
the traversal that is being computed due to the use of some “destructive” op-
erations in the CPDA such as collapse. Nevertheless, two very useful pieces of
information are recoverable from the configuration-stack: the O-view and the
P-view of the traversal.

Let c be a configuration. The long O-view, O-view and P-view of the
traversal that is currently computed by the configuration c, written respectively
bcc, xcy and pcq, can be recovered as follows:
• Long O-view:

bsc =

ε if top1s is undefined;
bpop1sc · top1s if top1 s ∈ INvar, top1s pointing to its imme-

diate predecesor;
bpop1sc · top1s if top1 s ∈ IN@, @ having no pointer;
bcollapse sc · top1s if top1 s ∈ INprime

λ , top1s pointing to its imme-
diate predecesor;

bcollapse sc · top1s if top1 s ∈ INλ \ INprime
λ , top1s pointing to

ip(jp(collapse s)).

• The O-view is defined similarly to the long-O-view except that the calcu-
lation stops when an @-node is reached:

xsy = top1s if top1s ∈ IN@, @ having no pointer;

• As shown in the original paper, the P-view psq is given by top2 c.

Definition We now give the formal definition of the collapsible pushdown
automaton from Hague et al. [4]. The presentation here differs slightly from
the original one: In the case (A), when pushing the prime child of an applica-
tion node @ on the stack, we assign it a link pointing to the preceding stack
symbol in the top 1-stack (i.e., the @-node itself). This modification avoids
the case analysis on the value of j—the child-index of u’s binder—in the cases
(V0) and (V1), and the sequence of instructions popp+1

1 can just be replaced by
popp1; collapse. The stack-symbols are the nodes of the computation graph of

3

If u’s label is not a variables, the action is just a pushv1, where
v is an appropriate child of the node u. Precisely:

• (A) If the label is an @ then δ(u) = push
E0(u),1
1 .

• (S) If the label is a Σ-symbol f then δ(u) = push
Ei(u)
1 ,

where 1 ≤ i ≤ ar(f) is the direction requested by the
Environment, or Opponent.

• (L) If the label is a lambda then δ(u) = push
E1(u)
1 .

Suppose u is a variable which is the i-parameter of its binder
and let p be the span of u.

• (V1) If the variable has order l ≥ 1, then

δ(u) = pushn−l+1; popp1; collapse; pushEi(top1),n−l+1
1

• (V0) If the variable is of ground type then

δ(u) = popp1; collapse; pushEi(top1)
1

Figure 1: The transition rules of CPDA(G).

G and the transition rules are given in Figure 1. The initial configuration is
defined as c0 = push1λ⊥n where λ refers to the root (dummy) lambda node of
the computation graph of G.

The automaton is well-defined in the sense that no collapse can occur at an
element whose link is undefined. (In particular it never occurs at non-lambda
nodes.)

Reachable configurations We use the notion of reachability with respect
to the →-step relation introduced in the original paper: c → c′ just if c′ =
δ(top1c)(c) where δ is the transition function defined Hague et al.’s paper [3,
Figure 2]. In other words, a configuration is →-reachable if it can be attained
starting from the initial configuration c0 by performing one or more applications
of the steps (A), (S), (L), (V1), (V0) from the algorithm defining CPDA(G). The
intermediate configurations visited by the internal transitions within a step are
therefore not →-reachable. A configuration is said to be reachable if it is →-
reachable or if it an intermediate configuration computed during a→-step (i.e.,
if it can be written (op1; . . . ; opk)(c) where c is →-reachable and op1, . . . , opk
are the first k instructions of some →-step).

Link convention Observe that in CPDA(G), when we push a lambda node
λξ on the stack, the associated link has order 1 if it is a prime lambda node
(case (A)), and n − ordλξ + 1 otherwise (case (V1). Hence, since no CPDA

4

instruction can change the link order of an element pushed on the stack, at
every stage during the execution of the CPDA the link order can be recovered
from the (order of the) node itself.

From now on we will only work with stacks occurring as sub-stack of reach-
able configurations of CPDA(G) therefore we will omit the order-component
altogether when representing stack symbols: we write λξ

k
to mean λξ

(1,k)
if λξ

is a prime lambda node and λξ
(n−ordλξ+1,k)

otherwise.

4 From incrementally-bound RS to PDA

We now fix an incrementally-bound higher-order recursion scheme G of order
n. We give a detailed analysis of CPDA(G) that will be used in the next section
to derive an equivalent (non-collapsible) order-n pushdown automaton.

4.1 Incremental order-decomposition

Observation Let s be a 1-stack. For any l ∈ N, s can then be written

s = ur+1 · ληkr
r · ur · . . . · λη

k1
1 · u1

where

• ληk11 is the last λ-node in s with order strictly greater than l;

• for 1 < l ≤ r, ληkl

l is the last λ-node in s
6λη

kl−1
l−1

with order strictly greater

than ordληkl−1
l−1 ,

• r is defined as the smallest number such that s6ληkr
r

does not contain any
lambda node of order strictly greater than ληkr

r .

In other words:

• for 1 ≤ k ≤ r, all the lambda nodes occurring in ul have order strictly
smaller than ordληl;

• for 1 ≤ l < l′ ≤ r we have ordληkl

l < ordληkl′
l′ ;

• r = 0 if and only if all the lambda node in s have order ≥ l.
The subsequence ληkr

r . . . ληk11 of s consisting of the lambda nodes ληkl

l de-
fined above is called the incremental order-decomposition of the 1-stack
s with respect to l ∈ N. This sequence is uniquely determined for any given
l ∈ N.

We now generalize this notion to higher-order stacks.

Definition 4.1. The incremental order-decomposition of a higher-order
stack s with respect to l ∈ N (or order-decomposition for short), written
orddecl(s), is defined as the order-decomposition of the top order-1 stack (defined
using convention 2.1). Equivalently it can be defined as follows:

orddecl(ε) = ε

for s 6= ε orddecl(s) = orddecordλη(s<λη) · ληk

where ληk is the last node in top2 s with order > l .

5

The incremental order-decomposition of s, written orddec(s), is defined as:

orddec(s) = orddec0(s) .

It follows immediately from the definition that:

l < l′ =⇒ orddecl′(s) 6 orddecl(s) (1)

where 6 denotes the sequence-prefix ordering.

Lemma 4.1. Let s be a (possibly higher-order) stack such that top1 s ∈ IN@ ∪
INvar and l ≥ 0.

(i) Suppose that orddecl(s) = 〈ληkr
r , . . . , λη

k1
1 〉 then for any lambda node a ∈ Γ

and link (j, k) we have

orddecl(push1a
(j,k) s) =

orddecl(s), if ord a ≤ l;
〈ak〉, if ord a ≥ ordληr;
〈ληkr

r , . . . , λη
ki
i , a

k〉, otherwise,
i = min{i ∈ {1..r}| ord a < ordληi} .

(ii) For any non-lambda node a ∈ Γ and link (j, k) we have

orddecl(push1 a
(j,k) s) = orddecl(s) .

(iii) If top1s is not a lambda node then

orddecl(pop1 s) = orddecl(s) .

Proof. Follows immediately from the definition of orddecl(s).

Lemma 4.2 (Incremental binders are in the order-decomposition). Let c be a
→-reachable configuration of CPDA(G) such that top1 c is a variable x. Then

(i) orddec(c) contains at least a node with order strictly greater than ord(x);

(ii) the last lambda node in orddec(c) satisfying the first condition is precisely
x’s binder.

In other words, x’s binder is the last lambda node in orddecord x(c).

Proof. (i) The top 1-stack of a→-reachable configuration contains the P-view
of some traversal whose last visited node is the top1 symbol [3, Corollary 8];
and the P-view of a traversal is exactly the path (in the unfolding of) the
computation graph from the last visited node to the root [6, Proposition
6]. Hence the binder of x, whose order is strictly greater than ordx, occurs
in the top 1-stack. Consequently orddec(c) must contain at least one node
of order strictly greater than l.

(ii) Since the recursion scheme is incrementally-bound, x’s binder is precisely
the first λ-node in the path to the root in the computation tree with order
strictly greater than x.

6

4.2 Stack safety

Definition 4.2 (Safe stack). Let s be an order-j non-empty stack for j ≥ 1.
The stack s is l-safe iff

1. orddecl(s) = 〈λη1
r, . . . , λη

1
1〉 for some r ≥ 0 i.e., the height component of the

links in orddecl(s) are all equal to 1;

2. for all 1 ≤ q ≤ r such that n− ordληq + 1 ≤ ord s:

• for q = 1 we have collapse s6λη1
is l-safe;

• for q > 1 we have collapse s6ληq
is ord(ληq−1)-safe.

We say that s is safe if it is 0-safe.

Since s is a stack, and not necessarily a configuration, it may have dangling
pointers. The condition n − ordληq + 1 ≤ ord s in the definition ensures that
ληj ’s link is not dangling so that we can indeed perform a collapse at ληj .

Lemma 4.3. Let s be a stack such that orddecl(s) = 〈ληkr
r , . . . , λη

k1
1 〉 and l ≥ 0.

If s is l-safe and l ≤ k ≤ n then s is k-safe.

Proof. Immediate consequence of the definition.

Lemma 4.4 (Collapse simulation). Let s be a sub-stack of a reachable config-
uration of CPDA(G) and l ≥ 0. If ord s ≥ 2 and top2 s is l-safe or if ord s = 1
and s is l-safe then for any lambda node λη in orddecl(s) we have:

collapse s6λη =
{
pop1 s6λη if λη is prime,
popn−ordλη+1 s6λη otherwise.

Proof. The collapse operation is defined as collapse s = popkj s where (j, k) ∈
N × N is the link attached to top1 s. Since s is a sub-stack of a reachable
configuration we have j = 1 if λη is prime and j = n − ordλη + 1 otherwise.
Furthermore, since top2 s is safe and λη belongs to the order-decomposition, the
height component necessarily equals 1.

4.2.1 Operations preserving stack safety

Lemma 4.5. Let s be a higher-order stack. Suppose that s is l-safe, l ≥ 0.
Then:

(i) topord s s is l-safe;

(ii) if top1 s is not a lambda node then pop1 s is l-safe;

(iii) for every non-lambda node a, 1 ≤ j ≤ n, k ≥ 1, push1 a
(j,k) s is l-safe;

(iv) for every lambda node a, push1 a
(1,1) s is l-safe if ord a < l, and safe if

ord a ≥ l.

Proof. This is a direct consequence of Lemma 4.1. For (vi), the cases ord a > l
and ord a < l follow immediately from Lemma 4.1(i); for ord a = l it follows
from the fact that orddec0(push1 a

(1,1) s) = orddecl(s) · a1.

7

Lemma 4.6. Let 0 ≤ l < n, q ≥ 0 and s be a stack of level 1 ≤ ord s < n. If s
is q-safe then s〈n−l+1〉 is max(l, q)-safe.

Proof. Let s be a safe stack with 1 ≤ ord s < n. We prove the result by induction
on the size of s. The base case is the trivial: s is the empty stack. Step case:
Since s is q-safe we have orddecq(s) = 〈λη1

r, . . . , λη
1
1〉. By (1), orddecmax(l,q)(s)

is a prefix of orddecq(s). Let b be the index in orddecq(s) of the last node
of orddecmax(l,q)(s): thus ληb is the last lambda node in top2 s with order >
max(l, q).

The stack-operation (·)〈n−l+1〉 updates the pointers as follows: the height
component of each link is incremented if the order of the stack symbol is l and
is kept unchanged otherwise. Hence we have:

orddecq(s〈n−l+1〉) = 〈λη1
r, . . . , λη

1
b , λη

k
b−1, λη

1
b−2 . . . , λη

1
1〉

for some 1 ≤ k ≤ 2. And therefore:

orddecmax(l,q)(s〈n−l+1〉) = 〈λη1
r, . . . , λη

1
b〉 . (2)

Now consider an index j such that b ≤ j ≤ r and n−ordληj+1 ≤ ord s. Since
the height component of ληj ’s link is not affected by the operation (·)〈n−l+1〉,
this operation commutes with collapse and we have:

collapse s
〈n−l+1〉
6ληj

= (collapse s6ληj
)〈n−l+1〉 . (3)

By assumption s is q-safe therefore collapse s6ληj
is q-safe if j = b = 1 and

ord(ληj−1)-safe if j > b ≥ 1.
Since collapse s6ληj

is strictly smaller than s, by the induction hypothe-
sis we have that (collapse s6ληj

)〈n−l+1〉 is max(q, l)-safe if j = b = 1, and
max(ord(ληj−1), l)-safe if j ≥ b > 1.

For j > b, ληj−1 occurs in orddecl s therefore ord(ληj−1) > l, similarly for
j = b we have ord(ληj−1) ≤ l. Hence (collapse s6ληj

)〈n−l+1〉 is

(i) max(q, l)-safe for j = b = 1,

(ii) l-safe for j = b > 1, and therefore max(q, l)-safe by Lemma 4.3,

(iii) ληj−1-safe for j > b.

This shows that (collapse s6ληj
)〈n−l+1〉 is max(l, q)-safe, and therefore by (3)

so is collapse s〈n−l+1〉
6ληj

.

Lemma 4.7. Let s be a higher-order stack of level ≥ 2 and l ≥ 0. If

1. popord s s is safe,

2. and topord s s is l-safe,

then s is l-safe.

Proof. Let s = [s1 . . . sr sr+1] for some l ≥ 0. We proceed by induction on
topord s s = sr+1. The base case sr+1 = ⊥ord s−1 is trivial. Suppose that sr+1 is
not the empty stack.

8

(i) Clearly orddecl s = orddecl sr+1, hence since sr+1 is l-safe the lambda
nodes in orddecl s have all a link of height 1.

(ii) Let λη be a lambda node in orddecl(s) = orddecl(sr+1) such that n −
ordλη + 1 ≤ ord s. Since its link is of height 1 we have collapse s6λη =
popn−ordλη+1 s6λη.

If n − ordλη + 1 = ord s then popn−ordλη+1 s6λη = popord s s6λη =
popord s s which is l-safe by the first assumption and Lemma 4.3.

Otherwise n− ordλη + 1 < ord s and we have:

collapse s6λη

= popn−ordλη+1 s6λη since λη’s link has height 1
= [s1 . . . sl (popn−ordλη+1 sr+16λη)] n− ordλη + 1 < ord s

= [s1 . . . sp (collapse sr+16λη)] since λη’s link has height 1.

By the second assumption, sr+1 is l-safe therefore collapse sr+16λη is l-
safe if λη is the last node in the l-order decomposition, and k-safe where
k is the order of the following node in orddecl(sr+1) otherwise.

Since |collapse sr+16λη| < |sr+1| we can use the induction hypothesis to
show that the same hold for [s1 . . . sp (collapse sr+16λη)]. Therefore it is
l-safe and so is collapse s6λη by the previous equality.

Lemma 4.8. Let n > l ≥ 1 and s be a safe higher-order stack such that
2 ≤ n− l + 1 ≤ ord s ≤ n. Then pushn−l+1 s is l-safe.

Proof. Let s = [s1 . . . sc+1] be a safe higher-order stack such that 2 ≤ n− l+1 ≤
ord s ≤ n. Then by Lemma 4.5(i), sc+1 is safe.

We show that pushn−l+1 s is l-safe by finite induction on the order of s.
• Base case: ord s = n− l+ 1. We have pushn−l+1 s = [s1 . . . sc+1s

〈n−l+1〉
c+1].

Since sc+1 is safe, by Lemma 4.6 s
〈n−l+1〉
c+1 is l-safe, and by Lemma 4.7,

[s1 . . . sc+1s
〈n−l+1〉
c+1] is l-safe.

• Suppose ord s > n−l+1. Then pushn−l+1 s = [s1 . . . sc+1pushn−l+1 sc+1].
Since sc+1 is safe, by the induction hypothesis pushn−l+1 sc+1 is l-safe,
and by Lemma 4.7 so is [s1 . . . sc+1pushn−l+1 sc+1].

4.3 Simulation and proof of correctness

Proposition 4.1. Let G be an incrementally-bound recursion scheme. The
→-reachable configurations of CPDA(G) are safe.

Proof. If n = ord c = 1 then the result holds trivially since CPDA(G) does not
contain any transition of the form pushj for j > 1 and therefore the links in a
reachable configuration all have a height component equal to 1.

Take n ≥ 2. We proceed by induction on the →-step relation. The initial
configuration is clearly safe. Suppose that c is a safe →-reachable configuration
and that c→ c′. We do a case analysis on top1 c:

• (A): We have c′ = push
E0(u),1
1 c = push1E0(u)(1,1) c where E0(u) denotes

a lambda node. It is safe by Lemma 4.5(iv).

9

• (S): We have c′ = pusha1 c = push1 a
(j,k) c for some dummy lambda node a

and undetermined link (j, k). It is safe by Lemma 4.5(iv) since ord a = 0.

• (L): We have c′ = push
E1(u)
1 = push1E1(u)(j,k) where E1(u) is not a

lambda node and j, k ≥ 1 are undetermined. It is safe by Lemma 4.5(iii).

• (V1) & (V0): Suppose u is labelled by a variable x of order l. Since c is safe
we have orddec(c) = 〈λη1

r, . . . , λη
1
1〉, r ≥ 0. Since the recursion-scheme G

is safe, by Lemma 4.2, x’s binder is precisely the last node of orddecl(c).
Let b be its index in orddec(c), and i ≥ 1 be the index of x in ηb.

– (V1): l ≥ 1. We have c′ = push1Ei(top1)(n−l+1,1) t where t is given
by (pushn−l+1; popp1; collapse)(c) = collapse((pushn−l+1 c)6ληb

). By
Lemma 4.8 pushn−l+1 c is l-safe therefore, since ληb is the last node
in orddecl(c), by definition of l-safety we have that t is l-safe. Finally
the lambda node Ei(top1) pushed by the last operation has precisely
order l = ord(x) therefore

orddec0(c′) = 〈λη1
r, . . . , λη

1
b , Ei(top1(t))1〉 .

Thus all the lambda nodes in orddec0(c′) have a link of height 1.
We now need to show that safety is preserved when collapsing at
nodes of orddec0(c′). Let b ≤ j ≤ r, we have c′6ληj

= t6ληj
. For

j > b, the l-safety of t implies that collaspse c′6ληj
is ordληj−1-safe

as required. For j = b it gives that collaspse c′6ληb
is l-safe as required

since l = ordEi(top1(t)).
Now it remains to show that collapse(c′6Ei(top1(t))

) = collapse c′ is
safe. Since we have i ≥ 1 the node top1(c′) = Ei(top1(t)) is not a
prime lambda node, thus by Lemma 4.4 we can simulate the collapse
by a pop of order n− ordEi(top1(t)) + 1:

collapse c′ = popn−ordEi(top1(t))+1 c
′

= popn−l+1 c
′

= (pushn−l+1; popp1; collapse; pushEi(top1),n−l+1
1 ; popn−l+1) c

The operation pop1 and push1 only affects the top 1-stack. Further-
more, since x’s binder has order > l, its link has order < n − l + 1
therefore the collapse operation following the popp1 only affects the
top (n−l)-stack. Consequently, the operation popn−l+1 effectively re-
stores the configuration to its value prior to performing the pushn−l+1

operation:
collapse c′ = c .

Hence c′ is safe.
– (V0): l = 0 (which implies that b = 1). The configuration c′ is given

by push1Ei(top1) collapse(c6ληb
). Since c is safe by definition so is

collapse(c6ληb
). Since the pushed lambda node Ei(top1) has order

l = 0, by Lemma 4.5(iv) c′ is safe.

Definition 4.3 (Simulating PDA). Let G be an incrementally-bound recur-
sion scheme. We define PDA(G) as the higher-order PDA obtained from
CPDA(G) by replacing every collapse operation by pop1 if top1 s is prime,
and by popn−ord top1(s)+1 otherwise.

10

Theorem 4.1 (Correctness of the simulation). PDA(G) and CPDA(G) are
equivalent.

Proof. In CPDA(G), the collapse operation occurs only in the steps (V1) and
(V0). For (V1) it is of the form:

collapse(popp1(pushn−l+1 c))

for some→-reachable configuration c, where top1 c is a variable x of order l and
span p. By the previous proposition, c is safe and by Lemma 4.8 pushn−l+1 c
is l-safe. Since x has span p, after the operation popp1 the top stack symbol is
precisely x’s binder, which by Lemma 4.2, belongs to orddecl(c), therefore by
Lemma 4.4 the collapse can be soundly simulated by a pop of order 1 if x’s
binder is a prime node, and a pop of order n−ord(top1(popp1(pushn−l+1 c))) + 1
otherwise.

The case (V0) is proved similarly.

Remark 4.1. The same result holds for the original CPDA from Hague et al.:
Clearly the two CPDAs have the same set of →-reachable configurations so
Proposition 4.1 clearly still holds. The simulating PDA from 4.3 is obtained from
Hague et al.’s CPDA by replacing every collapse operation by popn−ord top1(s)+1;
and the equality in Lemma 4.4 should be replaced by:

collapse s6λη = popn−ordλη+1 s6λη .

The correctness of the simulation follows similarly.

5 From PDA to incrementally-bound RS

Let A be an order-n PDA. Following the transformation from Hague et al. from
order-n CPDA to order-n recursion scheme [4] we can produce an equivalent
incrementally-bound homogeneously-typed recursion scheme. Since we do not
need to implement the collapse operation we can remove the parameters Φ
altogether from the rules Fa,ep of the recursion scheme. The type of the non-
terminal Fa,ep for each stack symbol a, 1 ≤ e ≤ n, and state 1 ≤ p ≤ m becomes:

Fa,ep : (n− 1)m → . . .→ 0m → 0

and the production rules are of the general form:

Fa,ep Ψn−1 . . .Ψ0
(q,θ)→ Ξ(q,θ)

where the right-hand side is given by:

Cases of θ Corresponding Ξ(q,θ)

pushb,k1 Fb,kq 〈F
a,e
i Ψn−1|i〉Ψn−2 . . .Ψ0

pushj Fa,eq Ψn−1 . . .Ψn−(j−1)〈Fa,ei Ψn−1 . . .Ψn−j |i〉Ψn−(j+1) . . .Ψ0

popk Ψn−k,qΨn−k−1 . . .Ψ0

It is easy to verify that this recursion scheme is incrementally-bound and
homogeneously-typed.

11

References

[1] W. Blum and C.-H. L. Ong. The safe lambda calculus. In S. R. D. Rocca,
editor, TLCA, volume 4583 of Lecture Notes in Computer Science, pages
39–53. Springer, 2007.

[2] C. Broadbent. A proof of Blum’s conjecture, June 2009.

[3] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible push-
down automata and recursive schemes. extended version (59p), November
2006.

[4] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible push-
down automata and recursive schemes. LICS, pages 452–461, 2008.

[5] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are
easy. In FOSSACS’02, pages 205–222. Springer, 2002. LNCS Vol. 2303.

[6] C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In Proceedings of IEEE Symposium on Logic in Computer Science.,
pages 81–90. Computer Society Press, 2006. Extended abstract.

12

