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Abstract

Termination analysis is a very important component of software verification: it is futile
trying to prove a property on a program result if the program does not terminate and
therefore never returns the result. Turing showed that termination is an undecidable prop-
erty. However in [6], Lee, Jones, and Ben-Amram introduced “size-change termination”, a
decidable property strictly stronger than termination. They proposed a method called the
“size-change principle” to analyze it.
Size-change analysis relies on a finite approximation of the program computational be-
havior. A call semantics is defined such that the presence of infinite call sequences char-
acterizes non-termination. Since the approximated computational space is finite, infinite
call sequences must contain loops. Deciding the size-change property then amounts to ana-
lyze loops of the program through the use of “size-change graphs” describing program calls.

We first explain the size-change principle in the first-order case ([6]) and its adaptation
to the untyped λ-calculus ([5]). My implementation provides some improvements over the
original method: it avoids the need to rename variable to obtain an accurate approximation.
Finally we extend the size-change principle to a subset of ML featuring ground type values,
higher-order type values and recursively defined functions. Compared to other works, this is
the first time that the size-change principle is applied to a higher-order functional language.
In a first attempt, the ML program is converted into a λ-calculus expression, by means
of Church numerals and the Y combinator, and analyzed using the algorithm of [5]. Im-
plementing numbers with church numerals has two important drawbacks: the size of the
converted program increases proportionally to the integer values used in its definition.
Secondly, since the decrease in integer values is not properly reflected by church numerals,
most recursively defined functions operating on numbers are not recognized as terminating!
In the second approach, being inspired by [5] we redefine from scratch an algorithm for
the core ML case which handles natively if-then-else and let rec structures with no
conversion. This algorithm produces the same result as [5] for higher-order values but can
also analyze the size of ground type values. This enhances the scope of the termination
analyzer to some recursively defined function operating on numbers.

An electronic version of this thesis as well as OCaml sources are available at the fol-
lowing address: http://william.famille-blum.org/research/mscthesis/index.htm
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Chapter 1

Introduction

1.1 History

One of the most challenging problems in computer science was to find an algorithm which
can tell whether a given computer program terminates or not. This is known as the Halting
problem, an important problem in computer science since it is the first problem that has
been proved undecidable. Other problems have been proved undecidable and usually this
has been achieved by proving that they reduce to the Halting problem ([9]).

The undecidability of the halting problem implies the unsolvability of the Entschei-
dungs problem (determining if a given first order logic statement is valid or not). Another
consequence is Rice’s theorem which says that the truth of a non-trivial statement about
a function defined by an algorithm is undecidable. As a consequence, the problem “this
algorithm halts for the input 0” is undecidable.

Turing proved the undecidability of the Halting problem. This famous proof proceeds
by reductio ad absurdum: we suppose that a function exists such that it returns yes when
a particular program terminates and no if it does not and then we build a new function
which uses the first one and causes a contradiction.

The original proof of Alan Turing is based on a formalization of the concept of algorithm
using Turing machines. However, his result is still valid in other models of computation
computationally equivalent to Turing machines such as Lambda Calculus, the base “lan-
guage” used in this project.

Turing’s result shows that there is no general method to answer the questions of the
type: “Does this particular program terminate for all input value?”. But particular in-
stances of the halting problem may be solved. Given a specific program, it is sometimes
possible to prove that for any input it will halt. The difficulty is that every proof requires
new arguments which cannot be guessed in a mechanical way.

The undecidability of the halting problem relies on the fact that programs have po-
tentially infinite memory. In practice, the amount of memory used by existing computers
is limited. In that case, the halting problem for the constrained case of limited memory
computers is solvable by a general algorithm which is however inefficient ([9]).

1



1.2. Selection of particular question for study 2

1.2 Selection of particular question for study

The halting problem is undecidable, however there exist properties stronger than termi-
nation which are decidable. This suggests that there could be mechanical ways to prove
termination in some particular cases.

In this project, we are interested in the study of the size-change termination property.
Size-change termination is strictly stronger than termination (size-change termination im-
plies termination but not all terminating programs are size-change terminating) but it is
decidable.

The size-change principle is aimed at analyzing this property through the use of spe-
cial graphs named “size-change graphs”. These graphs describe the calls occurring in a
program.

The aim of this MSc project is to implement and extend the size-change principle for
termination analysis of programs expressed in λ-calculus or in a purely functional language
such as the functional core part of ML.

1.3 Proposed method

The method which I will use is explained by Jones and Bohr in [5] and based on the
size-change principle introduced by Lee et al. in [6].

In [6], the size-change principle is used to determine whether a first-order functional
program with well-founded parameter values halts.

In [5], the method is adapted to the case of λ-calculus. The algorithm explained can
tell whether the call-by-value evaluation of a closed untyped λ-term terminates.

The method is sound: when it returns yes, the input program is guaranteed to termi-
nate. However it is also incomplete: when it returns no, the input program may or may
not terminate.

1.4 Description of the project

The work for this MSc project consisted in:

• understanding the size-change principle and the generation of the size-change graphs,

• constructing an implementation of the termination certifier for the call-by-value λ-
calculus.

As an optional part, the following directions have then been explored:

• implementing a parser for λ-calculus expressions

• extending the method to a subset of the Core ML language with basic arithmetic
constants and recursively defined function (based on the semantics given in [7]).



1.5. Timetable 3

• implementing a parser for the Core ML language

Objective Caml ([4]) is the language I used to implement all the algorithms. See [3] for
the complete implementation sources.

1.5 Timetable

I give here the timetable followed during this project:

• From April, 26th to May, 15th: Background readings ([6], [5], [7]).

• From May, 16th to May, 31st: Implementation of the algorithm given in [5].

• From June, 1st to June, 30th: Implementation of an OCaml parser and integra-
tion with the algorithms developed before. In parallel: extension of the size-change
principle to a subset of core ML (first approach)

• From July, 1st to July, 31th: Extension to a subset of core ML ([7]) and extension
of the size-change principle with a second approach.

• From August, 1st to August, 31th: Dissertation writing.

1.6 Link between the project and the taught part of

the course

There is an obvious strong link between this project and the Lambda Calculus course
(Hilary term). λ-calculus is the language on which we first concentrate for the termination
analysis of programs.

Moreover, the ML extension of the principle required knowledge acquired during the
Lambda Calculus course such as techniques for proving theorems by induction and case
analysis and for defining the semantics of a language.

Finally, the techniques learnt during the Compilers course (Michaelmas term) gave me
the skills necessary to build a parser for lambda calculus expression and a subset of Core
ML language using the tools ocamllex and ocamlyacc.

1.7 Structure of the dissertation

There are basically three main parts in the dissertation. Each of them deals with a different
application of the size-change principle and the first one also introduces the principle. The
following is an outline of the dissertation:
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• The next chapter (2) presents in details the size-change principle. The first-order
functional programming language introduced in [6] is used as an example throughout
this chapter. Results from [6] are recapitulated in an original way. Some of the
definitions extracted from [6] have been slightly modified to make them more general
in order to reuse them in the following chapters.

The general algorithm for size-change termination analysis is explained in this chap-
ter.

• Chapter 3 deals with the higher-order case. The language used is the untyped λ-
calculus. This chapter starts by introducing the method explained in [5] for applying
the size-change principle to the λ-calculus. It is based on the results of chapter 2.
Only the results of [5] which are specific to the λ-calculus case are stated.

It then gives details about my improvements over the method explained in [5].

The chapter concludes with implementation details and practical results obtained.

• Chapter 4 is an account of the work I have carried out in order to extend the size-
change principle to a more complicated functional language. The language used is a
subset of core ML.

We will see how to deal with recursively defined function (with and without the use
of combinators), ground types values and if-then-else structure.

The two approaches that I have tried are explained. The first one proceeds by
conversion from the core ML language to the λ-calculus. The second one consists
in redefining from scratch an appropriated size-change principle for the core ML
language. We will see that the latter approach is more powerful than the first.

The resulting algorithm is powerful enough to prove termination of higher-order and
first order programs.

Implementation details are discussed as well as practical results.

• The last chapter is the conclusion of the dissertation.

• The Appendix contains proofs of the important lemma and theorems stated in chapter
4.



Chapter 2

The size-change principle for
first-order programs

This chapter introduces some basic notions and explains in details the size-change principle
introduced in [6]. Definitions and theorems are illustrated with examples. For simplicity,
these examples are all based on first order programs (in contrast with higher-order programs
where a function can be passed as a parameter to another function).

In the next chapter we deal with higher-order programs: the size-change principle is
applied to the simply typed lambda calculus.

Most of the definitions and theorems given in this chapter will be used in the next two
chapters.

2.1 Basic concepts: well-founded set

[9] We recall here some basic definitions and properties on well-founded set used in math-
ematics.

Let (X,≤) be a partially ordered set.

Definition 2.1.1 (Well-founded set). We say that the relation ≤ is well-founded on X if
every non-empty subset E of X has a minimal element for ≤ (an element m ∈ E such
that ∀e ∈ E · ¬(e ≤ m)).

X is then said to be a well-founded set.

Well-founded sets are particulary adapted for the induction principle. Indeed, to prove
that a particular property P holds for all elements of a well-founded set (X,≤), it suffices
to show the following property:

[∀y · y ≤ x =⇒ P (y)] implies that P (x) holds.

In particular for any minimal elements m, P (m) must hold.

Definition 2.1.2 (Chain). A chain is a totally ordered subset of a partially order set.
A chain is said to be infinitely descending if it has no minimal element.

5



2.2. The language L for first-order programs 6

We can now prove the following proposition which characterizes a well-founded set by
its chains.

Proposition 2.1.1 (Well-founded set characterization). A partially order set is well-
founded if and only if it contains no infinite descending chain.

The implication of this proposition will be used in the following section to justify that
a program verifying the size-change termination condition must terminate.

2.2 The language L for first-order programs

In this chapter we consider first-order programs. The programming language considered
is an untyped functional language which supports recursion, if-then-else, and primitive
operator calls. It is defined in the article introducing the size-change principle ([6]). L
denotes this first-order language. Its syntax and semantics are recalled below.

Loop structures (like for, while and repeat loops) are not present in the language.
This simplifies the size-change principle (indeed dealing with loops structure would require
to define a special notion of function call).

Definition 2.2.1 (Syntax of L).

P ∈ Prog ::= def1 . . . defm

def ∈ Def ::= f(x1, . . . , xn) = ef

e ∈ Expr ::= x

| e1 = e2

| if e1 then e2 else e3

| op(e1, . . . , en)

| f(e1, . . . , en)

x ∈ Parameter ::= identifier

f ∈ FcnName ::= identifier not in Parameter

op ∈ Op ::= primitive operator

The first function defined in the list of definitions of the program is denoted finitial. This
is the function which initializes the program computation (i.e. the first function called).

If f is a function then:

• ef denotes the body of the function in its definition.

• Param(f) denotes the set of f’s parameters

• f(i) denotes the ith parameter of f.
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Op is the set of operators, for instance pred and succ are two operators (the predecessor
and successor for numbers).

The semantics used to interpret L is the call-by-value evaluation semantics (see [8])
given in definition 2.2.2.

E denotes the semantic operator: E [[e]]
→
v is the value of expression e in the environment

→
v . An environment is a tuple containing the value of the parameter of f.

E is a function of type Expr → V alue∗ → V alue# where V alue∗ is the set of finite se-
quences of V alue elements and V alue# = V alue∪{⊥, Err}. ⊥ represents non-termination
and Err represents runtime error (i.e. exception). Err is the result of pred 0 for instance.

Primitive operators like pred are interpreted using another semantic operator: O :
Op → V alue∗ → V alue#. We assume that primitives always terminate therefore ∀op ∈
Op,

→
v∈ V alue∗ : O[[op]](

→
v ) 6= ⊥. However operators may cause errors.

The complete semantics of this programming language is given by the following defini-
tion:

Definition 2.2.2 (Call-by-value semantics of L). See paragraph 1.4 and figure 5.1 of [6]
for more details.

Domains

v ∈ V alue with the special value True ∈ V alue
u, w ∈ V alue# = V alue ∪ {⊥, Err}, where ⊥ v w for all w.

Types

E : Expr → V alue∗ → V alue#

O : Op→ V alue∗ → V alue#

lift : V alue→ V alue#

strictapply : (V alue∗ → V alue#) → (V alue#)∗ → V alue#

Semantic operator

E [[f(i)]](v1, ..., vn) = lift vi

E [[if e then e1 else e2]]
→
v =


E [[e]]

→
v if E [[e]]

→
v ∈ {⊥, Err}

E [[e1]]
→
v if E [[e]]

→
v = True

E [[e2]]
→
v elsewhere.

E [[op(e1, . . . , en)]]
→
v = strictapply(O[[op]])(E [[e1]]

→
v , . . . E [[en]]

→
v )

E [[f(e1, . . . , en)]]
→
v = strictapply(E [[ef]])(E [[e1]]

→
v , . . . E [[en]]

→
v )
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Auxiliary operation The function strictapply implements the mechanism of exception
in programming languages:

strictapply ψ(w1, . . . wn) =


ψ(v1, . . . vn) if ∀i ∈ 1 . . . n : wi /∈ {⊥, Err}

and wi = lift vi;

wi elswhere, where i is the least index
such that wi ∈ {⊥, Err}

Assumption

O[[op]]
→
v 6= ⊥

2.3 Control flow graph and state transition in L pro-

grams

The computational behavior of the input program is represented by a call-graph. The
vertices of the call-graph are the program control points. They correspond to the calls
made in the evaluation of the program. An arc from one call to another signifies that the
latter call is caused directly by the former.

The notion of program points, calls and control flow graph are defined formally in the
following paragraphs:

2.3.1 Program points

Program points are possible positions in the program where calls can occur. They charac-
terize the caller of a call as well as the callee. P denotes the set of all program points in a
program.

For instance, for first order programs (studied in [6]), we can define program points to
be the function names of the program.

In the following example:

plus(x,y) = x + y

f = plus (3,2)

the set of program points is P = {plus, f}.
In order to apply the size-change principle, a requirement is for the set P to be finite

(this implies the presence of loops in infinite call sequences). P must be a finite approxi-
mation of the infinite set of possible states in the program.

2.3.2 Calls

Definition 2.3.1 (Call). Let p1, p2 ∈ P. We write p1
c→ p2 to denote a call to program

point p2 occurring at program point p1 and labeled with the name c.
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In the first-order case, program points are the function names. A call is therefore defined
by the name of the caller function and the name of the function called. It is represented
by an arrow in the control flow graph of a program. In the example of section 2.3.1, the
call from function f to function plus is denoted f→ plus.

Definition 2.3.2 (Transitive call).

1. A call sequence is a finite or infinte sequence of calls: cs = 〈c1c2 . . .〉

2. A call sequence is well-formed for P if there are functions f1, f2, . . . such that f1
c1→

f2, f2
c2→ f3, . . .

3. If cs is finite then cs = 〈c1c2 . . . ck〉 and we use the notation

f
cs→ fk+1 ,

[
f1

c1→ f2, f2
c2→ f3, . . . , fk

ck→ fk+1

]
to denote the transitive call from f to fk+1.

4. f→∗ fk+1 means that f
cs→ fk+1 for some call sequence cs.

5. A call sequence from a program point to itself is a recursive transitive call (csrec

is a recursive transitive call if f
csrec→ f for some f ∈ P).

We say that a call f
c→ g is activable if there is a program point reachable in P where

the call can be made, in other words if we have finitial →∗ f
c→ g.

If a call is activable then its corresponding arc in the control flow graph belongs to the
connected component of the control flow graph containing finitial. Note that the reciprocal
is false since the connected component containing finitial can contain an arc representing
a dead code call.

2.3.3 Control flow

The control flow of a first-order program is a graph which nodes correspond to the functions
of the program and which edges correspond to possible calls from one function to another.

Example 2.3.1
The control flow of the following program:

f(n) = if n mod 2 = 0 then g(2*n) else 5 + f(n-1)

g(n) = if n = 0 then 0 else h(n-1)

h(n) = if n mod 2 = 0 then 2 * g(n-1) else 1 + h(n-1)

is

//GFED@ABCf //

�� ?>=<89:;g ++ ?>=<89:;hjj
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The control flow graph is statically determined. This means that one does not need to
run the program in order to find the edges of the control flow graph: they can be found
just by looking at the code defining the program.

Each computation of P can be represented as a path in the control flow graph starting
at node finitial. This path may be infinite if the computation does not terminate.

Example 2.3.2
Consider the program given in last example. The call sequence of the computation of f on
input 7 is of the form 〈f, f, g, h, . . .〉.

Not all infinite paths of the control flow graph correspond to a possible computation.
For instance, consider the following program:

h(n) = if false then h(n+1) else 1

Its control graph is:
// ?>=<89:;h
		

The control graph of h contains an infinite path corresponding to the call sequence
〈h, h, . . . , h, . . .〉. But there is no such possible execution of the program h since the recur-
sive call in the definition of h is part of a dead-code block.

2.3.4 State transition

Call sequences do not describe completely a computation of a program. They just give
information on the functions beeing called during the execution of the program. In order
to describe completely the computations, state transition sequences have been introduced
in [6]. The formal definition is given below:

Definition 2.3.3 (State transition sequence).

• A state is a pair in FcnName× V alue∗.

• A state transition (f,
→
v ) → (g,

→
u) is a pair of states connected by a call of type

g(e1, . . . , en) occuring in ef, the body of f, such that
→
u= (u1 . . . un) and E [[ek]]

→
v=

lift(uk) for k ∈ 1..n.

• A state transition sequence is a sequence (possibly infinite) of form:

sts = (f0,
→
v0) → (f1,

→
v1) → (f3,

→
v3) → . . .

where (ft,
→
vt) are state transitions.

• The state transition sequence containing all function calls occurring during the com-

putation of finitial on the input
→
x∈ V alue∗ is noted:

sts(P,
→
x) = (finitial,

→
x) → . . .



2.4. Termination of first-order programs 11

• We note Sts(P) the set of all state transition sequences of computation starting at
function finitial:

Sts(P) = {sts(P,→x) | →
x∈ V alue∗}

Note that a state transition sequence corresponding to a computation is finite if and
only if the corresponding call sequence is finite.

2.4 Termination of first-order programs

First-order programs are interpreted by the call-by-value evaluation semantics given in
definition 2.2.2. This semantics model defines formally the intuitive concept of termination
for a first-order program. An important property required by this semantics is that all
primitive operators (like addition on numbers) terminate.

We use the following notations:

• P  , ∀x ∈ V alue∗ : E [[finitial]]
→
x 6= ⊥ (program P terminates on all input

values),

• ¬(P ) , P does not terminate on all input values.

Example 2.4.1
The program h terminates although there is an infinite path in its control flow graph.

We already noticed that not all infinite paths in the flow graph correspond to real
computation of the program. But if one of these infinite paths corresponds to a real
computation then the corresponding computation does not terminate.

Conversely, a finite path represents a terminating computation. This is true since:

• we assumed that all primitive operators terminate,

• the language does not contain loop structures hence preventing the presence of infinite
loop in the body of a function.

Hence, non-termination of a first-order program results from an infinite sequence of
calls during the computation:

Proposition 2.4.1. A program P terminates on all value of its inputs if and only if all
state transition sequences starting from finitial are finite. In other words:

[∀sts ∈ Sts(P) · |sts| <∞] ⇐⇒ P 

The proof proceeds by analysis of the call-by-value semantics. See [6] for the details.
We now deduce the following corollary which gives a sufficient condition for a program

to terminate:
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Corollary 2.4.2. Let P be a program. If none of the infintite paths in the control flow
graph of P correspond to a valid computation then P terminates on all input values.

Proof If none of the infinite path in its control flow graph correspond to a possible com-
putation then all possible call sequences are finite. Therefore all possible state transition
sequences are finite. Hence by proposition 2.4.1 the program terminates on all input
value. �

2.5 Size-change principle

2.5.1 Idea

We suppose that we are dealing with programs which function parameters belong to a
well-founded set (in the first order case, the set V alue has to be well-founded).

We say that P satisfies the size-change termination condition (SCT) if every infinite
call sequences following the control flow of P would cause an infinite descent in some of the
program’s data value.

Since infinite descents are not possible in well-founded set (proposition 2.1.1), this
implies that no infinite path in the flow graph corresponds to a possible computation. By
proposition 2.4.1, this implies that the program terminates on all input values.

Hence SCT guarantees termination.
The size-change principle is based on a theorem (2.5.2 stated in the next section), which

states that if the set of calls in the flow graph of the program verifies a certain property
(all loops are descending), then the program verifies the size-change termination property
and therefore it terminates for all input values.

Before establishing this theorem, we need to define a new kind of objects: size-change
graphs. A size-change graph describes a call in a program. Among all the size-change
graphs describing a call, we are interested in those which give us accurate information
about the call. We say that these graphs safely describes the call.

This section gives formal definitions for size-change graphs, the safety property and the
size-change termination condition.

2.5.2 Size-change graphs

We use the definition given in [5] (the one given in [6] is less general than this one):

Definition 2.5.1 (Size-change graph).

• A size-change graph A
G→ B consists of a source set A, a target set B and a set of

labeled arcs G:
A

G→ B = (A,B,G)

G ⊂ A× {↓,=} ×B
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where G does not contain two arrows with same endings and different labels.

The graph is identified with its arc set G when A and B are clear from context.

• An arc (x,=, y) ∈ G is noted x
=→ y

• An arc (x, ↓, y) ∈ G is noted x
↓→ y

• A size-change graph containing at least one arc of type x
↓→ x is said to be descend-

ing.

We now relate calls and size-change graphs (see definition 12 of [5]):

Definition 2.5.2 (SCG describing a call).

1. For p ∈ P we associate gb(p), the graph-basis of the program point p.

2. A size-change graph describes a call p1 → p2 (or a transitive call p1 →∗ p2) if its
source set is gb(p1) and its target set is gb(p2).

To understand these definitions, let us consider the case of first-order programs. The
definition of a size-change graph for a first-order program given in [6] can be restated as
follow:

Definition 2.5.3 (First order size-change graph). Let f, g be function names in program
P.

A size-change graph from f to g written Param(f)
G−→ Param(g) describes a call from

function f to function g. It is a bipartite graph relating the parameters of f to those of g
with labeled-arc set

G ⊂ Param(f)× {↓,=} × Param(g)

where G does not contain two arrows with same endings and different labels.
The graph is identified with its arc set G when f and g are clear from context.

We remark that this definition for first-order programs is equivalent to definition 2.5.1
if we take:

• P = set of function names in P

• and for f ∈ P , gb(f) = Param(f)

Example 2.5.1 gcd
The following program computes the greatest common divisor of two numbers using Euclid
algorithm.

gcd(x,y) = if y = 0 then x else gcd(y, (x mod y))
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We have gb(gcd) = {x, y}.
Each of the following size-change graphs describes the recursive call occuring in gcd:(

gb(gcd), gb(gcd),
{
y

=→ x, y
↓→ y
})

(
gb(gcd), gb(gcd),

{
y

↓→ x, y
↓→ y
})

However we will see later that the second one does not safely describes the call (the safety
property is defined in section 2.5.4).

2.5.3 Composition of size-change graphs

If G represents the call f → g and G′ the call from g → h then we want to be able to
construct a graph representing the transitive call from f to h. The graph we are looking
for is the composition of G by G′ noted G;G′ and defined as follow: (our definition is
equivalent to the definition 14 of [6] and definition 1 of [5])

Definition 2.5.4 (Size-change graph composition).

1. Size-change graphs A
G1→ B and C

G1→ D are composible if B = C.

2. The sequential composition of size-change graphs A
G1→ B and B

G1→ D is A
G1;G2−→ D

where

G1;G2 = {x ↓→ z | ∃y · x ↓→ y
r→ z ∨ x

r→ y
↓→ z}

∪ {x =→ z | ∃y · x =→ y
=→ z ∧ (x

↓→ z) /∈ G′}

using the following notation: x
r→ y

r′
→ z ,

[
x

r→ y ∈ G1 and y
r′
→ z ∈ G2

]
Example 2.5.2 Graph composition for first order programs

Suppose that G1 = {a =→ x, a
=→ y} describes the call f

c1→ g and G2 = {x =→ v, x
↓→

u, y
↓→ v} describes g

c2→ h then

G1;G2 = {a =→ v, a
↓→ u}

describes the transitive call f
〈c1c2〉−→ h.

The following diagrams illustrate how the composition is computed:

G1 G2︷ ︸︸ ︷
a = //

=

��?
??

??
??

? x
=

��?
??

??
??

?
↓
//u

y ↓
//v

≡

G1;G2︷ ︸︸ ︷
a

↓
//

=

  @
@@

@@
@@

@@ u

v
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Definition 2.5.5 (Size-change graphs describing a program). A set of size-change graphs
G describes a program P if

G = {Gc | c is an activable call in P}

and if for every activable call c in P the graph Gc ∈ G describes c.

Definition 2.5.6 (Size-change graph describing a loop). A size-change graph G describes
a loop (or is a loop size-change graph) if G describes a recursive transitive call (definiton
2.3.2).

If moreover G;G = G, we say that G describes asymptotically the loop.

The condition G;G = G in the definition 2.5.6 means that the description of the call
is still valid after after any number of iterations of the loop: suppose that G describes
f

cs→ f then it describes the size-relation between elements of Param(f) after any number
of repetitions of the call sequence cs.

Definition 2.5.7 (Closure by composition). Let G be a set of size-change graphs. The
closure by composition of G noted G is defined as follow:

G =
∨{

H such that H ⊇ G and

(
f

Gcs1→ g ∈ H
g

Gcs2→ h ∈ H

)
=⇒ f

Gcs1ˆcs2−→ h ∈ H

}

where Gc1ˆc2 = Gc1 ;Gc2

2.5.4 Safe size-change graphs

We expect size-change graphs to safely describe what really happens during a call in the
program.

This means that each arc a
=/↓→ b in the graph should provide a sound characterization of

the data-size relation between object a and object b during the evaluation of the program.
An arrow labeled ↓ should mean that at running time, the size of the value represented by
b is strictly less than the size of the value represented by a. Likewise, an arrow labeled =
should mean that there is no increase in the data-size. If these conditions are realized then
we say that the arc safely describes the call.

In the case of first-order programs, a possible definition could be:

Definition 2.5.8 (Arc safely describing a call in the first-order case). An arc a = x
=/↓→ y

safely describes a call f → g if

• a = x
↓→ y and the value used as parameter y in the call to function g is always

strictly less than the value of the input parameter x of f .
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• or a = x
=→ y and the value used as parameter y of g is never greater than the value

of the input parameter x of f .

From now on, we assume that the notion of safety for a size-change graph arc has been
chosen. Based on the definition of arc safety, we then define the safety property for a
size-change graph and for a set of size-change graphs:

Definition 2.5.9 (Safety properties). Consider the following set of size-change graphs
describing P:

G = {Gc | c is an activable call in P}

Then:

1. the size-change graph A
Gc→ B is safe for c if every arc in Gc safely describes the

size relation in the call,

2. the set G is a safe description of program P if for every activable call c, Gc is
safe for c.

3. By extension we say that A
G→ B is safe for a well formed sequence of calls

cs = 〈c0c1 . . . ck〉 if every arc in G safely describes the size relation in the transitive

call · c0→ · c1→ . . .
ck→ ·.

Note that the safety property for a set of size-change graphs requires only activable
calls to be decribed (this definition is therefore similar to definition 12 in [5] but different
from definition 9 of [6] where all calls in P need to be described).

Example 2.5.3 gcd (example 2.5.1 continued)
The following size-change graphs safely describe the recursive call occuring in gcd :

G1 = {y =→ x, y
↓→ y} G2 = {y =→ x, y

=→ y}
G3 = {y =→ x} G4 = {y =→ y} G5 = ∅

G1 is a safe description because x mod y < y.

While all these graphs safely describe the call, G1 is the most accurate one (it gives
more information about the call).

For i ∈ {1..5}, the set Gi = {Gi} of size-change graphs is a safe description of program
gcd.

2.5.5 Size-change termination condition

Definition 2.5.10 (Multipath and thread).
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• a multipath is a finite or infinite sequence of size-change graphs where consecutive
graphs are compatible for composition. This sequence can be viewed as a concatena-
tion (possibly infinte) of graphs.

• a thread in a multipath is a connected path of arcs (of any length) in the multipath.

• a thread is descending if at least one of the arc in the sequence is labelled with ↓

• a thread is infinitely descending if it contains infinitely many arcs labelled with ↓.

We define the size-change condition property relatively to a safe set of size-change
graphs:

Definition 2.5.11 (G-SCT). A program P is G-SCT (for G-size-change terminating) if

• G safely describes P

• for all infinite call sequences cs = 〈c0c1 . . .〉, the multipath Gc0Gc1 . . . has an infinitely
descending thread.

Theorem 2.5.1 (G-SCT and termination).

P is G-SCT =⇒ P 

A proof of this theorem is given in [6].

2.5.6 Deciding SCT

We know that the SCT property can be used to prove that a program terminates on all
input value. The problem is now to decide whether the SCT holds for a particular program.
In this section, we will give an algorithm which decides SCT.

The following theorem gives a characterization of the G-size-change termination condi-
tion:

Theorem 2.5.2 (Characterization of G-SCT). Let P be a program, G a set of size-change
graphs which safely describes P. Then P is not G-size-change terminating if and only if G
contains a non-descending asymptotic loop size-change graph:

P is not G-SCT ⇐⇒ ∃f G→ f ∈ G such that

(
G;G = G

∀x ∈ gb(f) : x
↓→ x 6∈ G

)

A proof of this theorem is given in [6].
This theorem leads us to the following algorithm for deciding G-SCT.

Algorithm 2.5.1 (Size-change principle algorithm). The following steps describes an al-
gorithm which decides G-SCT. We assume that a known algorithm, noted Asafearcs, can
generate a safe description of any call occurring in a program.
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1. By syntax analysis, the flow graph of the program is determined. For each activable
call in this flow graph, we associate the corresponding size-change graphs (SCG)
using the algorithm Asafearcs to generate its arcs. We obtain a set G of size-change
graphs which safely describes the program P.

2. Build G, the closure of G by size-change graph composition.

3. If there is a graph G ∈ G:
G describes a recursive call f → f
and G is not descending,
and G = G;G then

return "P is not G-size-change terminating"

else "P is G-size-change terminating"

Note that this algorithm does not decide the size-change termination condition in gen-
eral but the G-SCT condition.

The power of this new algorithm directly depends on our ability to generate accurate
safe size-change graphs. The naive approach for Asafearc consisting in generating size-
change graphs with no arcs is clearly not satisfactory.

We want the algorithm Asafearc to generate as many safe arcs x
↓→ y as possible. This

way, we reduce the chance that the closure G contains a non-descending size-change graph
describing a loop.

Complexity of the algorithm The generation of the closure of the set G of size-change
graphs is expensive in time (the number of possible compositions can be exponential in the
size of the input program size).

The G-SCT decision problem happens to be PSPACE complete. A proof of this is given
in [6].



Chapter 3

The size-change principle in the
untyped λ-calculus

The size-change principle described in the previous chapter can now be adapted to the
untyped λ-calculus case.

Recall that the size-change principle method relies on definitions of the following no-
tions:

1. the language (its syntax, its semantics)

2. termination of the program computation

3. a finite program points space P

4. notion of call such that non-termination is charaterized by the presence of infinite
call sequences

5. the graph-basis function gb(p) for p ∈ P

6. a size for the parameter values (a well-founded order).

7. definition of the safety property for arcs of size-change graphs.

8. the algorithm Asafearcs used to generate arcs which safely describe calls in the pro-
gram.

In the following sections we explain how each of these notions are defined in the λ-
calculus case. Finally an algorithm will be derived for termination analysis in the λ-
calculus.

19
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3.1 The untyped λ-calculus

We assume that the reader is familiar with the basics notion of the untyped λ-calculus. A
complete treatment can be found in the Bible of the λ-calculus by Henk Barendregt [1].
[2] is one possible introduction to λ-calculus.

We recall basic definitions:

Definition 3.1.1 (λ-calculus basic definitions). The set of λ-expressions is defined by the
following grammar:

e ::= x | e @ e | λx.e

x ::= variable name

The set of free variable of an expression noted fv(e) is defined by:

fv(x) = {x}
fv(e @ e′) = fv(e) ∪ fv(e′)
fv(λx.e) = fv(e) \ {x}

e is a closed λ-expressions if fv(e) = ∅.
The set of subexpressions of a λ-expressions e is noted subexp(e) and is defined by:

subexp(x) = {x}
subexp(e @ e′) = {e @ e′} ∪ subexp(e) ∪ subexp(e′)
subexp(λx.e) = {λx.e} ∪ subexp(e)

A program is a closed λ-expressions.

3.2 Termination in the untyped λ-calculus

Usually, non-termination in the untyped lambda calculus is expressed by the fact that a
given expression contains no redex. Here we rely on the call-by-value semantics to define
evaluation of a lambda expression and we say that a program does not terminate if there
is no evaluation of it.

As we did for the first order case, we define the call-by-value semantics for the untyped
λ-calculus. We use the judgement form e ⇓ v to denote that expression e evaluates to the
value v.

Definition 3.2.1 (Call-by-value semantics). The call-by-value evaluation is defined by the
following inference rules where ValueS is the set of all abstractions (expressions of type
λx.e) :

(ValueS)
v ⇓ v

(If v ∈ ValueS ) (ApplyS)
e1 ⇓ λx.e0 e2 ⇓ v2 e0[v2/x] ⇓ v

e1@e2 ⇓ v
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A consequence of the definition of rule (ValueS) is that any abstraction terminates
(even if it contains redex).

As an example the term Ω = (λx.xx)(λx.xx) does not terminate while the term λx.Ω
does.

Definition 3.2.2 (Termination notation). We use the following abbreviations:

e ⇓ , ∃v ∈ V alueS · e ⇓ v

e 6⇓ , ¬(e ⇓)

3.3 Program control points

In contrast with the previous chapter, we are dealing here with higher-order programs.
Consequently, a function parameter can be itself a function. Hence a program can make a
call to a function passed as a parameter! For this reason, the program’s control points set
P cannot be represented by function names as we did in the previous chapter.

In the λ-calculus case, program points are the subexpressions of the program expression
(i.e. the control flow graph nodes are the subexpressions of P):

P = subexp(P)

3.4 Calls

The size-change principle relies on the analysis of calls occurring in a program. We need
to define what a call is in the untyped λ-calculus.

In [5] the following notion of call is used for the untyped λ-calculus:

There is a call from expression e to expression e′ (noted e→ e′) if in order to
deduce e ⇓ v for some value v, it is necessary to first deduce e′ ⇓ u for some u.

The formal definition is given using inference rules as follow:

Definition 3.4.1 (The call relation for the untyped λ-calculus). We define the call relation
on the set of λ-expression → ⊂ Exp × Exp. The call relation is → = →

r
∪ →

d
∪ →

c
where →

r
, →

d
, →

c
are defined by the following inference rules:

(OperatorS)
e1@e2 →

r
e1

(OperandS)
e1 ⇓ v1

e1@e2 →
d

e2

(CallS)
e1 ⇓ λx.e0 e2 ⇓ v2

e1@e2 →
c
e0[v2/x]

Letters c, r and d stand respectively for Call, operatoR and operanD.

An important result of [5] is that non-termination in the untyped lambda-calculus is
characterized by the presence of infinite call chains in the program. This property is a
requirement for the size-change principle.
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Lemma 3.4.1 (Nontermination Is Sequential [5]). Let P be a program. Then:

P 6⇓ ⇐⇒ P = e0 → e1 → e2 → . . .

This lemma is the counterpart of proposition 2.4.1 (in the first-order case) for the
untyped λ-calculus.

3.5 Semantics describing the computation space

In order to describe the computation space Jones and Bohr proposed to replace the se-
mantics for the untyped-lambda calculus by an equivalent one describing more precisely
the computation space. This new semantics is based on the use of environments.

An environment records the value associated to each free variable of an expression. The
use of environments permits us to keep subexpressions unmodified in the judgment forms.
Every state is now described by a subexpression of P and by an environment (also called
closure) which associate a value to each of the free variables of the subexpression. Recall
that subexpressions are the control points, this is the reason why we want to keep them
unmodified during the application of the rules. Only the environment part of the state will
be updated.

The formal definition of states, values and environments are given in the following
definition:

Definition 3.5.1 (State, Value, Environment). The sets State, V alue, Env are the small-
est sets verifying the following equation:

State = {e : ρ | e ∈ Exp, ρ ∈ Env, fv(e) ⊆ dom(ρ)}
V alue = {e : ρ | λx, e : ρ ∈ State}
Env = {p : X → V alue | X finite set of variables}

The empty environment with domain X = ∅ is written [].

Definition 3.5.2 (Environment-based semantics). The judgement form are s1 ⇓ v and
s1 → s2 where s1, s2 ∈ State and v ∈ V alue.

The evaluation and call relations ⇓,→ are defined by the following inference rules, where
→ = →

r
∪ →

d
∪ →

c
.

(Value)
v ⇓ v

(If v ∈ Value) (Var)
x: ρ ⇓ ρ(x)

(Operator)
e1@e2 : ρ →

r
e1 : ρ

(Operand)
e1 : ρ ⇓ v1

e1@e2 : ρ →
d

e2 : ρ

(Call)
e1 : ρ ⇓ λx.e0 : ρ0 e2 : ρ ⇓ v2

e1@e2 : ρ →
c
e0 : ρ0[x 7→ v2]

(Apply)
e1@e2 : ρ →

c
e′ : ρ′ e′ : ρ′ ⇓ v

e1@e2 : ρ ⇓ v
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Note that the substitution occurring in the rules (ApplyS) has been now replaced by
an update of the environment in the (Call) rule.

We can map each state to an expression with no free variables by replacing recursively
the free variables by their associated expressions in the environment. This mapping is
given in [5]: F : Exp × Env → Exp defined as

F (e : ρ) = e[F (ρ(x1))/x1, ..., F (ρ(xk))/xk] where {x1, .., xk} = dom(ρ) ∩ fv(e)

As a result, the environment based semantics is equivalent to the standard one. Indeed
P : [] ⇓ v relatively to definition 3.5.2 if and only if P ⇓ F (v) relatively to the standard
semantics (see [5]).

Consequently, the lemma 3.4.1 is still valid with this new semantics:

Lemma 3.5.1. Let P be a program. Then:

P : [] 6⇓ ⇐⇒ P : [] = e0 : ρ0 → e1 : ρ1 → e2 : ρ2 → . . .

This lemma is a key element in the size-change principle: the main theorem of the
size-change principle (2.5.1) is based on it.

Remark 3.5.1. In section 3.3, we defined control points in the λ-calculus as beeing subex-
pressions of the program P. This choice is motivated by the following property of the
environment semantics:

Proposition 3.5.2 (Subexpression property). If P : [] ⇓ λx.e : ρ then λx.e ∈ subexp(P)

This is proved in [5] (by first introducing the notion of expression support).
Hence for the λ-calculus we choose:

P = subexp(P)

The important fact is that subexp(P) is finite: this allow us to use the size-change
principle.

3.6 Size-change graphs

The program points space P has been defined in the previous section.
We define the graph-basis function as follow:

Definition 3.6.1 (Graph-basis in the λ-calculus). The graph basis of e ∈ P = subexp(P)
is

gb(e) = fv(e) ∪ {•}

Remark 3.6.1. This graph-basis definition is the counterpart of the one used in the first-
order case (gb(f) = Input(f)). In the λ-calculus, function parameters have been replaced
by free variables.

Note that an extra element • has been added. It represents the expression e itself.
Later we will see how we use this element.
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The next step consists in defining the notion of size:

Definition 3.6.2 (State support). The support of a state s = e : ρ is

support(e : ρ) = {e : ρ} ∪
⋃

x∈fv(e)

support(ρ(x))

Definition 3.6.3 (Size relation). Suppose that s1 = e1 : ρ1 and s2 = e2 : ρ2 then

s1 � s2 ⇐⇒
{

support(s1) 3 s2

or subexp(e1) 3 e2 and ρ1(x) = ρ2(x) for all x ∈ fv(e2)
We write s1 � s2 if s1 � s2 and s1 6= s2.

The size relation � is an order and it is well-founded (on the set State× State).
In the next section we define the safety property by using this notion of size.

3.7 Safety property

We first define the valuation function which maps each graph-basis element to a state in
the set State. The special element • is mapped to the expression component of the state
itself and the free variables are mapped to their associated state in the environment. We
say that an arc is safe if it measures the size change of these valuated elements during a
call (relatively to the notion of size defined in definition 3.6.3):

Definition 3.7.1 (Safety property in the λ-calculus).

• For every s = e : ρ ∈ State, the valuation function for s noted s : gb(e) −→ V alue,
is defined as follow:

s(•) = s and e : ρ(x) = ρ(x)

• An arc a = x
=/↓→ y ∈ G is safe for (s1, s2) if

– a = x
=→ y and s1(x) � s2(y)

– or a = x
↓→ y and s1(x) � s2(y)

By extension we say that an arc safely describes the call s1 → s2 if it is safe for
(s1, s2).

The definitions given in section 2.5.4 for safe size-change graphs, safe sets of size-change
graphs and the G-SCT condition (definition 2.5.11 and 2.5.9) are now used relatively to
this definition of safe arcs.

Moreover we saw in lemma 3.4.1 that non-termination in the untyped lambda-calculus is
characterized by the presence of infinite call chains in the program. Consequently, theorem
2.5.1 is still valid in the λ-calculus case.

The characterization theorem 2.5.2 is also valid in the λ-calculus case.
Hence we can apply the last two parts of algorithm 2.5.1 to detect termination in the

λ-calculus programs. The remaining difficulty is to find how to generate a safe set of
size-change graphs describing the calls of the program.
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3.8 Graph generation (algorithm Asafearcs)

The environment-based semantics of the language given in definition 3.5.2 is now modified
in order to generate safe graphs during the application of each rule.

Definition 3.8.1 (Environment-base semantics with graph generation). The evaluation
and call judgement forms are now e : ρ → e′ : ρ′, G and e : ρ ⇓ e′ : ρ′, G where G is
the generated graph. The inference rules are:

(ValueG)
λx.e : ρ ⇓ λx.e : ρ, id=

λx.e

(VarG)
x : ρ ⇓ ρ(x), {x =→ •} ∪ {x ↓→ y | y ∈ fv(e′)}

(If ρ(x) = e′ : ρ′)

(OperatorG)
e1@e2 : ρ →

r
e1 : ρ, id↓

e1

(OperandG)
e1 : ρ ⇓ v1

e1@e2 : ρ →
d

e2 : ρ, id↓
e2

(CallG)
e1 : ρ ⇓ λx.e0 : ρ0, G1 e2 : ρ ⇓ v2, G2

e1@e2 : ρ →
c
e0 : ρ0[x 7→ v2], G

−•
1 ∪G•7→x

2

(ApplyG)
e1@e2 : ρ →

c
e′ : ρ′, G′ e′ : ρ′ ⇓ v,G

e1@e2 : ρ ⇓ v, (G′;G)
where

id=
e , {• =→ •} ∪ {x =→ x | x ∈ fv(e)}

id↓
e , {• ↓→ •} ∪ {x =→ x | x ∈ fv(e)}

G−•
1 , { y

r→ z | y
r→ z ∈ G1} ∪ { •

↓→ z | • r→ z ∈ G1}
G•7→x

2 , { y
r→ x | y

r→ • ∈ G2 } ∪ { •
↓→ x | • r→ • ∈ G2 }

Each graph extracted from this semantics is safe for its two associated program subex-
pressions (see theorem 2 in [5]).

3.9 Abstraction of the semantics

Remember that when we explained the size-change principle in the first order case, the
computation was exactly described using state transition sequences (definition 2.3.3).

After removing the V alue component of states in transition sequences we obtain call
sequences. Call sequences are paths in the control flow graph of the program (which is
determined at the syntax level).

The effect of abstracting state transition sequences by call sequences is to transform an
infinite graph into a finite one (indeed P is a finite set).
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The size-change principle is based on the finiteness of this approximation. The fact
that, in a finite graph, infinite paths must contain loops (see theorem 2.5.2) permits us to
analyze the size-change condition in terms of presence of particular loops in the program.

We therefore need to find a similar approximation for the λ-calculus case.
The approximation proposed in [5] consists in removing the environment components in

the semantics of the language. This reduces dramatically the number of possible judgment
forms which can be generated by the semantics. Indeed, since there are finitely many
subexpressions of the program expression, after removing the environment components
there are only finitely many possible judgements of type e→ e′ or e ⇓ e′.

The absence of environments forces us to change the way we deal with the variable
look-up in the (Var) rule. In [5] this problem is solved by over-approximating the rule
(Var) with a new rule (VarA). With this new rule, the variable x may now evaluate to
several possible values.

Precisely, if the program expression contains an application e1 e2 where e1 evaluates
to λx.e and e2 evaluates to v2 then we deduce that x ⇓ v2.

The formal definition of the approximate semantics is given below:

Definition 3.9.1 (Approximate semantics). The judgement forms are e ⇓ e′ and e→ e′.
The inference rules are:

(ValueA)
λx.e ⇓ λx.e

(VarA)
e1@e2 ∈ subexp(P) e1 ⇓ λx.e0 e2 ⇓ v2

x ⇓ v2

(OperatorA)
e1@e2 →

r
e1

(OperandA)
e1@e2 →

d
e2

(CallA)
e1 ⇓ λx.e0 e2 ⇓ v2

e1@e2 →
c
e0

(ApplyA)
e1@e2 →

c
e′ e′ ⇓ v

e1@e2 ⇓ v

Assuming that P : [] →∗ e : ρ then e : ρ→ e′ : ρ implies e→ e′ and e : ρ ⇓ e′ : ρ implies
e ⇓ e′.

This property justifies that the new rules are over-approximating the original semantics.

The approximate semantics of the language can now be extended in order to generate
safe graphs during the application of each rule (as we did for the exact semantics in
definition 3.8.1 ):

Definition 3.9.2 (Approximated semantics with graph generation). The judgement forms
are now e→ e′, G and e ⇓ e′, G.
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(ValueAG)
λx.e ⇓ λx.e, id=

λx.e

(VarAG)
e1@e2 ∈ subexp(P) e1 ⇓ λx.e0, G1 e2 ⇓ v2, G2

x ⇓ v2, {x
=→ •} ∪ {x ↓→ y | y ∈ fv(v2)}

(OperatorAG)
e1@e2 →

r
e1, id

↓
e1

(OperandAG)
e1@e2 →

d
e2, id

↓
e2

(CallAG)
e1 ⇓ λx.e0, G1 e2 ⇓ v2, G2

e1@e2 →
c
e0, G

−•
1 ∪G•7→x

2

(ApplyAG)
e1@e2 →

c
e′, G′ e′ ⇓ v,G

e1@e2 ⇓ v,G′;G

3.10 Description of the algorithm

We finally give the description of the entire algorithm for detecting size-change termination.
There are two steps: the generation of a safe set of size-change graphs for P and the decision
of the SCT property.

1. Construct an over-approximation G that contains (at least) all size-change graphs
that would be built during an exact evaluation of the λ-calculus expression:

G = { Gj | j > 0 ∧ ∃ei, Gi(0 ≤ i ≤ j) :

P = e0 ∧ (e0 → e1, G1) ∧ . . . ∧ (ej−1 → ej, Gj) }

G can be computed by applying exhaustively the rules given in definition 3.9.2, start-
ing with expression P until no new graphs or subexpressions are obtained. This pro-
cess ends since P contains a finite number of subexpressions and possible size-change
graphs.

G is safe for for P (see theorem 3 in [5]).

2. Check whether the program satisfies the G-size-change condition using the graph-
based algorithm explained in section 2.5.6 and based on theorem 2.5.2:

(a) build the set S containing the transitive closure of G.

(b) check that for all G ∈ S such that G;G = G, G has at least an arc of form

x
↓→ x. If it is the case then P is size-change terminating.

3.11 Improvement: a more accurate approximation

The over-approximation achieved by rules (VarAG) of definition 3.9.2 in the approximation
semantics given in the previous section has a cost: the rule (VarAG) produces evaluation
judgement forms of type x ⇓ v2 since the real scope of x is not taken into account.

Because the rules do not make use of the environment, at the next iteration of the
exhaustive research, this judgement form will be reused as a premise to the rule (CallAG)
or (ApplyAG) even if the context is different. As a result, new uninteresting judgement
forms will be generated (this has been observed during experiments).
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3.11.1 Variable renaming

One way to compensate for the absence of environment is to not reuse the same variable
name in two different contexts in the λ-calculus program expression. This is what Jones
and Bohr did in the examples of [5]. The drawback is that the code becomes less readable.
For instance the variable s and z used in church numerals have to be renamed for each
instance of a church numeral as we can see on the following code found in [5]:

Example 3.11.1
[λn.λx. n -- n --

@ [λr.λa. 11: (r@ 13: (r@a))] -- g --

@ [λ k.λ s.λ z.(s@((k@s)@z))] - succ-

@ x ] -- x --

@ [λs2.λz2. (s2@(s2@(s2@z2))) ] -- 3 --

@ [λs1.λz1. (s1@(s1@(s1@(s1@z1))))] -- 4 --

This is not an elegant way to solve the problem since it has an impact on the way the
programmer has to write the code.

3.11.2 Another approach

I propose here another method which I have implemented. The effect of this method is
the same as variable renaming : the approximation of the call and evaluation semantics is
more accurate. This means that starting with identical input codes, the new method (like
the variable renaming one) will detect size-change termination more often than the normal
method with no renaming. Moreover having a more accurate approximation speeds-up the
exhaustive application of approximation rules, since fewer judgment forms are generated.

The important change in this method is the way two subexpressions of P are distin-
guished. All the evaluation and call rules given until now were based on a structural
comparison of the subexpression. This means that two subexpressions which are struc-
turally equivalent are considered to be equal. I propose now to distinguish subexpressions
according to their associated node numbers in the abstract tree.

Example 3.11.2
Consider the expression P = (λx.xx)(λx.xx). Its abstract tree is:

GFED@ABC@

1 wwooooooooooo

5
''OOOOOOOOOOO

GFED@ABCλx

2 ��

GFED@ABCλx

6 ��GFED@ABC@

3 }}||
||

||

4
!!B

BB
BB

B
GFED@ABC@

7 }}||
||

||

8
!!B

BB
BB

B

?>=<89:;x ?>=<89:;x ?>=<89:;x ?>=<89:;x

By structural comparison, subexpressions 3 and 5 are equal. In the new method, subex-
pression 3 and 5 are considered to be different.
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We will use the following notations:

• node(i) represents the node number i in the abstract syntax tree,

• 〈@, n1, n2〉 represents a node labeled @ with two daughter nodes numbered n1 and
n2,

• 〈λx, n〉 denotes a node labeled by λx with a single daughter node with number n,

• 〈x〉 represents a leaf of the tree (labeled with a variable name).

The set of program point P is now defined as the set of node numbers in the abstract
tree of P (instead of the set of subexpressions of P):

P = nodes(P)

Applying this definition to example 3.11.2 we have

P = {0..8} instead of P = {x, x@x, λx.x@x, P}

The rules for the evaluation and call semantics are now interpreted relatively to this
new definition. For instance, if we apply rule (OperatorS) to the subexpression number 2
in the example we obtain the judgement form 2 →

r
3. Where 2 represents expression x@x

and 3 represents expression x. This judgement form differs from 6 →
r

7 even if expressions

2 and 3 are equivalent to expressions 6 and 7.
The rule (OperatorS) can be rewritten as follow:

(OperatorS)
i →

r
i1

(node(i) = 〈@, i1, i2〉)

Consequently the number of possible judgement forms for a given program P increases.
The rules of definitions 3.2.1, 3.4.1, 3.5.2, 3.8.1, 3.9.1 and 3.9.2 can be all reinterpreted

using the new notion of program points as we did for rule (OperatorS).

Rule (VarA)

Now, let us focus on the rule (VarA) of definition 3.9.1 in order to solve the over-approximation
problem:

(V arA)
e1@e2 ∈ subexp(P) e1 ⇓ λx.e0 e2 ⇓ v2

x ⇓ v2

We first rewrite the rule according to the new definition of P :

(V arA)
ie1@e2 ∈ nodes(P) i1 ⇓ iλx.e0 i2 ⇓ v2

ix ⇓ v2

with the following side-conditions:
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1. node(ie1@e2) = 〈@, i1, i2〉

2. node(iλx.e0) = 〈λx, i0〉

3. node(ix) = 〈x〉

The over-approximation is due to the fact that we ignore the scope of variable x. The
solution that I propose consists in adding a side-condition to the rule (VarA) to limit the
scope of the variable x. The side-condition is expressed as follow:

4. The node ix belongs to the subtree rooted at node ie0 and represents a free occurrence
of variable x.

The rules (VarAG) of 3.9.2 can be modified in exactly the same manner. These modified
rules are used in place of the original ones during the exhaustive search of judgement forms.

Remark 3.11.1. We now realize that the new definition of program points gives another
advantage: suppose that the variable x bound in the abstraction λx.e0 does not occur as a
subexpression of e0. Then the rule (VarAG) will not be applied and no useless judgement
forms will be generated! This was not the case with the original definition of rule (VarAG)
in [6].

Results

The effect of this change is the same as variable renaming.
It was easy to observe this experimentally: consider the original method noted Morg,

the new one Mnew, a program code P where variable identifiers are used several times in
different context and the corresponding code Pren where the variables have been renamed
manually.

Then I was able to check that judgement forms obtained by running Morg on Pren match
exactly with the judgment forms obtained by running Mnew on P.

Moreover, running Morg on P produces extra judgement forms which prevent the de-
tection of size-change termination on all the examples given in [5].

3.12 Implementation

The termination analysis algorithm for the λ-calculus has been implemented in OCaml
([4]). We give here a presentation of the implementation details including a description of
the data structures.

The object oriented features of OCaml have been used in order to develop reusable
code. For instance the functions used for the size-change termination decision procedure
are contained in a class defined in the separate module Sct which is then derived into other
classes for the different flavors of termination analysis.

The implementation consist of:
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• a common set of tools including the SCT decision procedure: 914 lines of commented
code (34 kilobytes).

• modules specific to the λ-calculus case including a parser and lexer for the language:
641 lines of commented code (21 kilobytes).

• modules specific to the ML language including a parser and lexer (see next chapter):
1182 lines of commented code (36 kilobytes).

3.12.1 Data structures

The program first parses an input file containing the description of the λ-calculus expression
and produces the correspdoning abstract syntax tree. The following OCaml type describes
the data structure used to store this tree:

type ident = string

type lambda_expr =

Var of ident

| Abstr of ident * lambda_expr

| Appl of lambda_expr * lambda_expr

λ-expressions

The only λ-expression involved in the termination analysis algorithm are the subexpressions
of the program expression P. This suggested me to use another data structure for the
program expression. the abstract syntax tree of the program is converted into an array.
Each element of this array is a node or a leaf of the syntax tree. Nodes are abstractions
and applications, leaves are variables. This way, any subexpression of the program can be
just represented by a number: the index of the subexpression in the program expression
array.

The type lmb node is the type of element in the program expression array.
Program subexpressions are represented by the index number of the corresponding node

in the expression array (type sub expr):

type sub_expr = int

type lmd_node =

VarN of sub_expr

| AbstrN of sub_expr * sub_expr

| ApplN of sub_expr * sub_expr
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Size-change graphs

The following Caml code gives the types used for the element of size-change graphs basis
(gb element) and the arcs of size-change graphs (scg arc):

type gb_element = Variable of sub_expr | Bullet type scg_arclabel =

ArrowDown | ArrowEqual type scg_arc = gb_element * scg_arclabel *

gb_element

An element of a graph basis is either a variable name or the special vertex • represented
by the value Bullet in the type gb element.

An arc in the graph is composed of a label and two graph basis elements.

Finally, a size-change graph G is represented by the following type:

type scgraph = sub_expr * sub_expr * scg_arc list

Instead of storing the list of graph basis elements in the structure of the size-change graphs,
we just record the number of two subexpressions in the program (the first two sub expr

components). The graph basis of the graph are determined by the set of free variables of
these two subexpressions. This trick speeds-up the generation of size-change graphs.

The third component is the list of arcs in the graph.

Judgement forms

Control points are the abstract syntax tree nodes:

type lmd_cpt = sub_expr

The following enumerated type gives the different flavor of judgement forms:

type lmd_jftype = Operator | Operand | FuncApp | Evaluation;;

Each judgment form has a component containing information generated during appli-
cation of the rules. In the λ-calculus case, this is the set of arcs of a size-change graph:

type lmd_jfgen = scg_arc list

Finally the type used for judgment forms:

type lmd_jf = lmd_jftype * lmd_jfgen
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3.12.2 Parser

I have developed a parser using ocamllex and ocamlyacc. This feature makes the program
easier to test on different λ-calculus expressions.

The syntax recognized by the parser is based on the formal syntax given in definition
3.1.1. Expression can be typed in a convenient manner: optional brackets can be avoided
using the standard convention used in λ-calculus, the application operator is optional and
commentary can be added after the sequence of characters // or between (* and *).

The following program is an example of a λ-expression correctly parsed by the program:

Example 3.12.1
(lambda n.lambda x.n // n

( lambda r.lambda a.r (r a)) // g

( lambda k.lambda s.lambda z.s ((k s) z)) // succ

x ) // x

(lambda s2.lambda z2.s2 (s2 (s2 z2))) // 3 (lambda s1.lambda

z1.s1 (s1 (s1 (s1 z1)))) // 4

3.12.3 LaTex output

Running the analysis with the command line argument -latex will produce a latex file
which, once processed with LaTex, generates a graphical representation of the syntax tree of
the λ-expression. This was particularly helpful during the debugging phase of the program.
See figure 3.13.2 for an example.

3.13 Results

The program has been tested on the examples given in [5]. The results obtained with my
implementation are identical to those given in [5].

The program is started at the shell prompt using the command sct file.lmd where
file.lmd is the file containing the lambda expression to analyze.

If the λ-expression is size-change terminating then the program outputs the list of all
loops with the corresponding size-change graphs certifying that they are descending.

If the λ-expression is not size-change terminating then the program outputs the list of
all loops which are not descending.

Note that only loop graphs verifying the equation G;G = G are printed out (contrary
to the outputs presented in [5]).

Example 3.13.1
This is a possible output:

Program is size change terminating! All the loops are descending:
24->*24,[s>s p=p][22, 8, 12, 8, 12, 8]
42->*42,[s3>s3][8, 22, 8, 12, 8, 22, 8, 38, 40]
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The first line tells us that the program is size-change terminating. Then each line of the
output corresponds to a different loop in the program.

Consider the first line:

• 24->*24 means that the loop occurs at node 24 in the abstract syntax tree of the
λ-expression.

• [s>s, u=t] is the list of arcs of the size-change graph describing the loop. s>s

represents the arc s
↓→ s and u=t represents the arc u

=→ t.

• [22, 8, 12, 8, 12, 8] is a list of subexpressions numbers. This is the call path
of the transitive call from subexpression 24 to itself.

One of the steps in the algorithm consists in computing the composition closure of
the set of size-change graphs. During that phase, when two graphs G1 : e → f and
G2 : f → g are composed, a new graph G3 : e → g is created. The number of the
subexpression f is then recorded in this list for the graph G3.

Remark 3.13.1. Note that the lists of program points stored in the third component can
differ from one implementation to another depending on the order in which graphs are
browsed during the closure computation.

For instance, my first implementation of the algorithm used Caml List data structures
to store the set of judgment forms. This implementation gave exactly the same control
points lists as the one obtained in [5]. The output printed in this report were obtained with
a more recent implementation which stores the judgement forms in a matrix for fast access.
This produces different control point lists. However this implementation is dramatically
faster than the original one and permits to analyze long programs that were impossible to
analyze before (see min.chml example in next chapter).

3.13.1 Omega

The lambda expression Ω ≡ (λx.xx)(λx.xx) is written as follow:

omega.lmd
(lambda x . x x )
(lambda x . x x )

$ ./sct omega.lmd
Program is not size change terminating! The critical (ie. not descending) loops are:
6->*6,[x=x][]

3.13.2 Simple program

This example is taken from [5].
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Table 3.1: Syntax tree generated with the command sct -latex omega.lmd.

simple.lmd
(lambda s . lambda z . s (s z) ) // two
(lambda m . lambda s . lambda z . (m s) (s z)) // succ
(lambda s . lambda z . z) // zero
(lambda x . x) // id1
(lambda x . x) // id2

$ ./sct simple.lmd
Program is size change terminating! All the loops are descending:
14->*14,[m>m, s=s, z=z][]
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Table 3.2: Syntax tree generated with the command sct -latex simple.lmd.

3.13.3 Church numerals

churchnum.lmd
(lambda n.lambda x.n // n
( lambda r.lambda a.r (r a)) // g
( lambda k.lambda s.lambda z.s ((k s) z)) // succ
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x ) // x
(lambda s.lambda z.s (s (s z))) // 3
(lambda s.lambda z.s (s (s (s z)))) // 4

$ ./sct churchnum.lmd
Program is size change terminating! All the loops are descending:
10->*10,[r>r, a=a][12]
10->*10,[r>r][]
12->*12,[r>r][10, 10]
12->*12,[r>r, a=a][10]
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Table 3.3: Syntax tree generated with the command sct -latex churchnum.lmd.

3.13.4 Ackerman’s function

ackerman.lmd
(lambda m. m

// b
( lambda g. lambda n. n g (g (lambda s.lambda z. s z) ) )

// succ
(lambda k.lambda s.lambda z. s (k s z))

)
(lambda s.lambda z. s (s z)) // 2
(lambda s.lambda z. s (s( s(z))) ) // 3

$ ./sct ackerman.lmd
Program is size change terminating! All the loops are descending:
8->*8,[g>g][16]
12->*12,[g>g][8]
16->*16,[s>s][8]
22->*22,[k>k, s=s, z=z][24]
22->*22,[s>s][8]
24->*24,[k>k, s=s, z=z][22]
24->*24,[s>s][16, 8, 12, 8, 22]
38->*38,[s>s][8] 40->*40,[s>s][8, 38]
42->*42,[s>s][8, 38, 40]
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Table 3.4: Syntax tree generated with the command sct -latex ackerman.lmd.

3.13.5 Performance

Table 3.5 gives the times it takes to run the analysis on the different λ-expression examples
using the natively compiled version of the Objective Caml program (these figures have been
measured on a laptop computer equipped with a P3 2.4Ghz processor, 512Mb of RAM and
running Windows XP).

λ-expression Time
omega.lmd 0.00s
simple.lmd 0.00s
churchnum.lmd 0.03s
ackerman.lmd 0.04s

Table 3.5: Performance of λ-expression analysis



Chapter 4

Extension to core ML

In this chapter, we extend the size-change principle to the case of a more complex language.
This language is a subset of the CoreML language based on the language defined in [7].
We use Lml to refer to this language.

4.1 The language Lml
There are two ground types in the language, integers (int) and booleans (bool). Remember
that the size-change principle requires us to work on well-founded data. We therefore
restrict the ground type int to positive integers and we work on the well well-founded set
(N,≤). There are two operators which can be applied to numbers: predecessor (prec) and
successor (succ).

The language supports if-then-else branching structure and equality test (e1 = e2)

4.1.1 Grammar of Lml

The following grammar defines expressions of the language Lml :

e ::= x,f value identifiers ( x,f ∈ V ar)
true boolean constants
false

if e then e else e conditional
n integer constants (n ∈ N)
e = e integer equality
succ e successor
pred e predecessor
fun (x:ty) -> e function abstraction
fun f=(x:ty) -> e recursively defined function
e e function application
let x = e in e local definition

38
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V ar is a countably infinite sets of variables.
This syntax is similar to the Caml syntax but there are some differences. For instance

fun f = (x:ty) -> e corresponds to the following Caml code:

let rec f = (fun (x:ty) -> e) in f

Other constructs can be implemented by adding some syntaxic sugar to the parser. For
instance the parser that I have implemented recognizes the following structures:

• multiple local definitions: let e = ...and...in...

• recursion: let rec f = ...in ...

The set of subexpresssions of a Lml expression e is noted subexpr(e) and is defined by
induction on the structure of e in the usual way.

Definition 4.1.1 (Free variables in Lml ). The set of all variables occuring freely in the
expression e is noted fv(e) and is defined by induction on the structure of e. In particular
we have:

fv(x) , {x}
fv(fun (x:ty) -> e) , fv(e)− {x}

fv(fun f=(x:ty) -> e) , fv(e)− {x}
fv(let x = e1 in e2 ) , fv(e1) ∪ (fv(e2)− {x})

If fv(e) = ∅, we say that e is a closed expression.

A Lml program is a closed expression.

4.1.2 Type assignment

(We rely on definitions given in [7].) A type can be assigned to every expression in Lml .
The set of Lml types is given by the following grammar:

ty ::= bool booleans
int positive integers
ty → ty functions

Type assignment relation is of the form Γ ` e : ty where

• the typing context Γ is a function from a finite set dom(Γ) of variables to types

• e is an expression

• ty is a type
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This relation is built inductively by the following rules (Γ[x 7→ ty] denotes the typing
context mapping x to ty and acting like Γ otherwise) :

Value identifiers:
x ∈ dom(Γ) Γ(x) = ty

Γ ` x : ty

Boolean constants:
b ∈ {true, false}

Γ ` b : bool
Integer constants:

n ∈ N
Γ ` n : int

Conditional:
Γ ` e1 : ty Γ ` e2 : ty Γ ` e : bool

Γ ` (if e then e1 else e2) : ty

Integer equality:
Γ ` e1 : int Γ ` e2 : int

Γ ` (e1 = e2) : bool

Function abstraction:
Γ[x→ ty1] ` e : ty2 x /∈ (Γ)

Γ ` (fun (x : ty1)-> e) : ty1 → ty2

Recursively defined function:
Γ[f 7→ ty1 → ty2][x→ ty1] ` e : ty2 f, x /∈ dom(Γ) f 6= x

Γ ` (fun f = (x : ty1)-> e) : ty1 → ty2

4.1.3 Canonical forms

We say that a Lml expression is a canonical form if it is a constant (integer or boolean) or
a function. The set of canonical forms (noted Canon) is given by the following grammar:

v ::= true
false
n any positive integer
fun (x:ty) -> e function
fun f=(x:ty) -> e recursive function

4.1.4 Semantics of Lml

The evaluation relation e ⇓ v expresses the fact that the closed expression e evaluates to
the closed canonical form v. The notation e ⇓ means that e ⇓ v for some v ∈ V alue and
e 6⇓ is an abbreviation for ¬(e ⇓). The rules of table 4.1 give the inductive definition of the
evaluation relation.

The evaluation of pred 0 causes an error. Any Lml expression which involves the
evaluation of pred 0 during its own evaluation will also cause an error. We use e �
to denote that an error will occur during the evaluation of the expression e. The error
semantics is given in the table 4.2. It is straightforward to check the following lemma:

Lemma 4.1.1 (The predicates ⇓ and � are disjoint).

e � =⇒ e 6⇓
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A program P terminates, noted P , if it can be evaluated or if an error occurs while
trying to evaluate it:

P , P ⇓ ∨ P�

Canonical forms:
v ⇓ v

(v in canonical form)

Conditional:
e ⇓ true e1 ⇓ v

if e then e1 else e2 ⇓ v

e ⇓ false e2 ⇓ v

if e then e1 else e2 ⇓ v

Integer equality:
e1 ⇓ n e2 ⇓ n

e1 = e2 ⇓ true

e1 ⇓ n e2 ⇓ m n 6= m

e1 = e2 ⇓ false

Operator:
e ⇓ n

succ e ⇓ n + 1

e ⇓ n n > 0

pred e ⇓ n− 1

Function application:
e1 ⇓ fun(x : ty)->e0 e2 ⇓ v2 e0[v2/x] ⇓ v

e1 e2 ⇓ v

e1 ⇓ v1 ≡ fun f = (x : ty)->e0 e2 ⇓ v2 e0[v2/x, v1/f] ⇓ v

e1 e2 ⇓ v

Local definition:
e1 ⇓ v1 e2[v1/x] ⇓ v

let x = e1 in e2 ⇓ v

Table 4.1: Lml evaluation relation

Lemma 4.1.2 (Determinism). The relation ⇓ is deterministic:

e ⇓ v ∧ e ⇓ v2 =⇒ v = v2
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Operators: (ErrOp1)
e ⇓ 0

pred e �
(ErrOp2)

e �
pred e �

(ErrOp3)
e �

succ e �

Conditional: (ErrIf1)
e �

if e then e1 else e2 �

(ErrIf2)
e ⇓ true e1 �

if e then e1 else e2 �
(ErrIf3)

e ⇓ false e2 �
if e then e1 else e2 �

Integer equality: (ErrEq1)
e1 �

e1 = e2 �
(ErrEq2)

e2 �
e1 = e2 �

Function application: (ErrApp1)
e1 �

e1 e2 �
(ErrApp2)

e1 ⇓
{

fun f = (x : ty)->e0
fun (x : ty)->e0

e2 �

e1 e2 �

(ErrApp3)

e1 ⇓ v1 ≡
{

fun f = (x : ty)->e0
fun (x : ty)->e0

e2 ⇓ v2 e0[v2/x, v1/f] �

e1 e2 �

Local definition: (ErrLocDef1)
e1 �

let x = e1 in e2 �
(ErrLocDef2)

e1 ⇓ v1 e2[v1/x] �
let x = e1 in e2 �

Table 4.2: Lml error semantics
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4.2 First approach: Conversion from ML to λ-calculus

We would like to decide G-size-change termination property for a given Lml program.
The first approach consists in converting the Lml program into a lambda calculus ex-

pression. Integers are expanded into church numerals, if-then-else structures ate im-
plemented using appropriated λ-expressions and recursion is implemented using the Y
combinator.

Provided that the conversion transposes isomorphically the termination property, we
can apply the size-change principle explained in chapter 3 on the converted expression.

The conversion is done by syntactical analysis of the Lml program expression:

• Function definition:

dfun x1 x2 . . . xn-> ee = λx1x2 . . . xn. dee

• Application:
de1 e2e = de1e de2e

• Numbers are implemented using Church numerals:

dne = λsz. s(s(. . . (s︸ ︷︷ ︸
n times

z)) . . .)

In particular we have d0e = λsz.z.

• The boolean value true and false are defined by:

dtruee = true = λxy.x

dfalsee = false = λxy.y

• The if-then-else structure is implemented by using the constants true and false:

dif e then e1 else e2e = e e1 e2 =

{
e1 if e = true
e2 elsewhere.

• The successor and predecessor operators are defined as follow:

dsucce = succ = λksz.s(ksz)

dprece = prec = λn.n(λz.z i(succ z))(λa b. d0e)

where i = λx.x.
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• Zero equality test:

dn = 0e = iszero dne = dne (λx.false)true

where n is a number.

• Local definition:

dlet x1 = ex1 and . . . xn = exn in ee = (λx1 . . . xn. dee) dex1e . . . dexne

Remark 4.2.1. another approach consists in substituting in the body expression of
the let structure all the occurences of the definition names by their corresponding
value translated into lambda calculs:

dlet x1 = ex1 and . . . xn = exn in ee = dee [dex1e /x1, . . . , dexne /xn]

where e[f/x] denotes the expression obtained after replacing every free occurence of
x in expression e by the expression f .

Unfortunately, this transformation does not preserve the termination property. In-
deed, suppose that Ω is a valid well-typed Lml expression which does not terminate,
then true[Ω/x] = true terminates whereas let x = Ω in true does not.

• Recursion is implemented using the Y combinator defined as follow:

Y = λp.(λq.p(λs.q(qs))) (λt.p(λu.t(tu)))

dlet rec f = ef in ee = (λf. dee)(Y (λf. defe))

4.2.1 Implementation

The implementation is straightforward: it consists in converting the Lml expression into a
λ-calculus expression by following the rules explained in the previous section.

Because of the improvement explained in section 3.11, variable renaming is unnecessary.
This makes the expansion of church numerals much easier during the conversion process
since all church numerals can now use the same variable names s and z.

The special parameter -ml indicates to the program that we want to analyze a Lml

expression, -conv indicates that we want it to be converted into a λ-calculus expression.

4.2.2 Results

This method has first been tested on the same programs as in the λ-calculus case (note
that using the syntax of Lml these sample programs can be rewritten in a clearer way).

The analysis is very fast and the results given are similar to those obtained in the
λ-calculus case:
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• Ackerman’s function

ackerman.chml
let b g n = n g (g 1)
in (fun m -> m b succ) 2 3 ;;

$ ./sct.opt -ml -conv ackerman.chml
Program is size change terminating! All the loops are descending:
12->*12,[ss>ss][37]
12->*12,[sk>sk, ss=ss, sz=sz][14]
14->*14,[ss>ss][12, 37, 12]
14->*14,[sk>sk, ss=ss, sz=sz][12]
28->*28,[s>s][37]
30->*30,[s>s][37, 12, 14, 12, 37, 28]
32->*32,[s>s][37, 12, 14, 12, 37, 28, 30]
37->*37,[g>g][12]
41->*41,[g>g][37]
45->*45,[s>s][37]
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• Simple:

simple.chml
let mysucc m s z = (m s) (s z)
and mysucc2 k s z = s (k s z)
and id x = x
in

2 mysucc 0 id id
;;

$ ./sct.opt -ml -conv simple.chml
Program is size change terminating! All the loops are descending:
26->*26,[m>m, s=s, z=z][]
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• Church numerals:

churchnum.chml

let g r a = r (r a)
in
(fun n -> fun x -> n g succ x ) 3 4
;;

$ ./sct.opt -ml -conv churchnum.chml
Program is size change terminating! All the loops are descending:
44->*44,[r>r, a=a][46]
44->*44,[r>r][]
46->*46,[r>r][44, 44]
46->*46,[r>r, a=a][44]

4.2.3 Performance

Table 4.3 gives the times it takes to run the analysis on the different Lml expression
examples (these figures have been measured on a laptop computer equipped with a P3
2.4Ghz processor, 512Mb of RAM and running Windows XP).

λ-expression Time
omega.cml 0s
simple.chml 0.02s
churchnum.chml 0.02s
ackerman.chml 0.05s
min.chml 3.444s

Table 4.3: Performance of Lml expressions analysis after conversion to λ-calculus
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4.2.4 Limit of the approach

The following example has also been tested. It implements a recursively defined function
for computing the minimum of two numbers.

min.chml
let rec min x y =
if x = 0 then 0
else
if y = 0 then 0
else
succ (min (pred x) (pred y))

in
min 2 5

;;

$ ./sct.opt -ml -conv min.chml
Program is not size change terminating! The critical (ie. not descending) loops are:
49->*49,[][67, 85, 96]
67->*67,[][85, 96, 49]
85->*85,[][96, 49, 67]
96->*96,[][49, 67, 85]
105->*105,[][]
106->*106,[][105, 105]
114->*114,[sz=sz][116]
114->*114,[][105]
116->*116,[sz=sz][114, 114]
116->*116,[][105, 114]
117->*117,[][105, 114, 116]
134->*134,[][]
135->*135,[][134, 134]
143->*143,[sz=sz][145]
143->*143,[][134]
145->*145,[sz=sz][143]
145->*145,[][134, 143]
146->*146,[][134, 143, 145]

Size-change termination is not detected by the algorithm! This particular example
shows that our first approach is inefficient. This is because Church numerals are not
adapted to the notion of size defined in definition 3.6.3. For instance the fact that

λsz.s z︸ ︷︷ ︸
d1e

: [] 6� λsz.z︸ ︷︷ ︸
d0e

: []

prevents us from detecting value decrease caused by the operator pred.
Moreover since numbers are expanded into church numerals, the size of the program

expression becomes linear in the value of the integers used in the program expression. A
program using the number x will have at least x nodes in its expression syntax tree. This
causes bad performance.

These remarks motivate the new approach explained in the next section.
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4.3 Second approach

The second approach consists in redefining from scratch the size-change principle for the
language Lml . We follow the same steps as we did in the last chapter: define a well-
founded notion of size, define call and evaluation semantics, extend these semantics with
graph generation and finally exhibit the approximate semantics.

New difficulties arise in Lml : the presence of recursive definitions, the presence of
ground types and errors.

The solution that I proposed combines two different size-change principles:

• The first one is based on an extension of the notion of size defined in [5] for the
higher-order case (λ-calculus) to the Lml language. We will refer to it as SCP+.

• The second one analyzes ground type values of type int and is based on the natural
well-founded notion of size for positive integers: (N,≤). We will refer to it as SCP 0.

These two principles will be applied in parallel. As a consequence, the rules for calls
and evaluation semantics will be equipped with two graphs generation components: one
for each of the two notions of size. Similarly, two different safe sets of size-change graphs
will be generated.

The Lml program will be terminating if it verifies the size-change termination condition
for at least one of the two size-change principles SCP+ and SCP 0.

We will assume that the Lml program expression has already been type-checked.

4.3.1 Size-change graphs

Remember that size-change graphs are defined by the program control point set P and the
graph-basis function gb.

In SCP+ and SCP 0, program points and graph-basis are defined as follow:

• A program point is either a program subexpression or an integer or boolean value.
Since the program point set P has to be finite for the size-change principle to work,
we will represent integer values by the special symbol ?int whose meaning is “any
integer”. Similarly we use the symbol ?bool for undetermined boolean values:

P = subexp(P) ∪ {?int, ?bool}

• The graph-basis of a subexpression is the set of its free variables extended with the
special • element. (definition 3.6.1). The graph-basis for the special element ?int

(and ?bool) is defined as the singleton {•}. The use of these particular symbols is
explained in section 4.3.5.
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4.3.2 Environment based semantics

As we did for the λ-calculus, we define environments in order to describe the computation
space.

The only difference is that V alue now contains ground type values as well as abstrac-
tions (i.e. all canonical form expressions).

The sets State, V alue, Env are the smallest sets verifying the following equation:

State = {e : ρ | e ∈ Exp, ρ ∈ Env, fv(e) ⊆ dom(ρ)}
V alue = {e : ρ | e : ρ ∈ State, e in canonical form}
Env = {p : X → V alue | X finite set of variables}

The evaluation and call semantics can now be expressed using environments. See tables
4.4 and 4.5 for a complete definition of the rules.

The judgement forms are e ⇓ v, G0|G+ and e→ e′, G0|G+ where e, e′, v ∈ Exp × Env
and G0 and G+ are the graph generation components (they can just be ignored for the
moment).

The environment based semantics is equivalent to the standard one. The two definitions
are related by the function F : Exp× Env → Exp (see [8] and [5]) defined as:

F (e : ρ) = e[F (ρ(x1))/x1, ..., F (ρ(xk))/xk] where {x1, .., xk} = dom(ρ) ∩ fv(e)

It can be shown that P : [] ⇓ v (relatively to table 4.4) if and only if P ⇓ F (v) (relatively
to table 4.1).

We do not need to redefine an environment based error semantics, instead we adopt
the notation e : ρ � to mean F (e : ρ) �.

The notation for termination is P where the termination predicates is defined as follow:

 = ⇓ ∪ �

Non-termination is characterized by the presence of infinite call sequences:

Lemma 4.3.1 (NIS). Let P be a program. Then:

¬(P ) ⇐⇒ P : [] = e0 : ρ0 → e1 : ρ1 → e2 : ρ2 → . . .

The proof is in Appendix A.

4.3.3 Size and safe graphs

A different notion of size is used in SCP 0 and SCP+:

• SCP+

Compared with the λ-calculus case, the syntax has changed but the function subexp
and support can be defined similarly for the Lml language. A counterpart of the size
definition 3.6.3 can also be stated for Lml .

Hence for the higher-order SCP+, we use exactly the same notion of size as for the
λ-calculus case.
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• For SCP 0, we are only interested in the analysis of the size of expression of type
int (positive integers). The notion of size used is based on the one underlying the
well-founded set (N,≤):

Definition 4.3.1 (Size relation for SCP 0). We use the notation ≥int to denote the
well-founded order on the integers and �bool to denote any well-founded order on the
boolean {true, false}.
Suppose that s1 = e1 : ρ1 and s2 = e2 : ρ2 then

s1 �0 s2 , ∃ Γ s.t.

{
Γ ` e1 : int, Γ ` e2 : int
and s1 ⇓ n1 ∧ s2 ⇓ n2 =⇒ n1 ≥int n2

or{
Γ ` e1 : bool, Γ ` e2 : bool

and s1 ⇓ b1 ∧ s2 ⇓ b2 =⇒ b1 �bool b2
or
Γ ` e1 : ty1 → ty2 and Γ ` e2 : ty3 → ty4

We write s1 �0 s2 if s1 �0 s2 and s1 6= s2.

This size relation �0 ⊆ State × State is a well-founded order. Note that relatively
to this order, all higher-order expressions are equal. This is because SCP 0 aims at
analyzing ground type values only.

Safe size-change graphs for SCP 0 and SCP+ are then defined relatively to their re-
spective notion of size through the use of the valuation function as we did in definition
3.7.1 for the λ-calculus case. The definition of a safe set of size-change graphs remains the
same.

The safety property is now defined and because of lemma 4.3.1, the two main theorems
of the size-change principle (theorem 2.5.1 and 2.5.2) are valid for SCP 0 and SCP+.

4.3.4 Semantics with graph generation

We know that the size-change principle can be used but we still need to provide a mecha-
nism to generate a safe set of size-change graphs.

Again, we reused the technique developed for the λ-calculus case: we extend the se-
mantics with a graph generation component in the judgement forms. In fact there are two
graph components since we are dealing now with two size-change principles in parallel.

The rules of tables 4.4 and 4.5 give the evaluation and call semantics with graph gener-
ation. Each rule generates two size-change graphs: one for SCT 0 and one for SCT+. The
judgement forms are e→ e′, G|G+ or e ⇓ v, G|G+ where s ∈ State and v ∈ V alue. The
special joker symbol means “any subexpression”, “any graph” or “any environment”
depending on the component in which it is used.

The sets of arcs G and G+ are used as an abbreviation for gb(e)
G→ gb(e′) and gb(e)

G+

→
gb(e′) (the size change graphs themselves).
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The tables 4.4 and 4.5 rely on the following definitions already given in the previous
chapter:

id=
e , {• =→ •} ∪ {x =→ x | x ∈ fv(e)}

id↓
e , {• ↓→ •} ∪ {x =→ x | x ∈ fv(e)}

G−•
1 , { y

r→ z | y
r→ z ∈ G1} ∪ { •

↓→ z | • r→ z ∈ G1}

G•7→x
2 , { y

r→ x | y
r→ • ∈ G2 } ∪ { •

↓→ x | • r→ • ∈ G2 }

Remark 4.3.1. We are only interested in generating size-change graphs for the evaluation
and call judgment forms: there is no need to define graphs for the error semantics. Hence
the tables 4.6 and 4.7 do not contain an environment based error semantics.

Remark 4.3.2. One may wonder why these tables do not contain the two following rules
for conditional evaluation:

(IfTrueG)
e : ρ ⇓ true : , | e1 : ρ ⇓ v1, G1|G+

1

if e then e1 else e2 : ρ ⇓ v1, G1|(id↓e1 ;G+
1 )

(IfFalseG)
e : ρ ⇓ false : , | e2 : ρ ⇓ v2, G2|G+

2

if e then e1 else e2 : ρ ⇓ v2, G2|(id↓e2 ;G+
2 )

In fact, by looking carefully at the rules given in table 4.4 and 4.5, we realize that these
two rules can be simulated by the rules (IfTrueCallG),(IfFalseCallG) and (ApplyG).

Remark 4.3.3. The definitions of graphs LocalGr0(x,G1, e, G2) and LocalGr+(x,G1, e, G2)
generated by the rule (LocalG) look rather complicated. To understand them, let us rewrite
the let structure of the Lml language by an equivalent form:

let x = e1 in e2 ≡ (fun (x:ty)->e2) e1

Hence, we can deduce the graph to be generated in rule (LocalG) by composing the
graph generated in the rules (ValueG), (CallG) and (ApplyG):

Let us use the following abbreviation:

B = idfun (x:ty)->e2 = id=
e \ {x

=→ x}

A0 = CallGr0
x(B,G1)

A+ = CallGr+
x (B,G+

1 )

By applying (ValueG) we have:

(V alueG)
fun (x:ty)->e2 : ρ ⇓ fun (x:ty)->e2 : ρ,B|B

(4.3.1)

We now apply the rule (CallG) to 4.3.1 and the premise e1 : ρ ⇓ v1, G1|G+
1 of (LocalG).

We obtain:

(CallG)
4.3.1 e1 : ρ ⇓ v1, G1|G+

1

(fun (x:ty)->e2) e1 : ρ →
c
e2 : ρ[x 7→ v1], A0|A+

(4.3.2)
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Finally we apply the rule (ApplyG) to 4.3.2 and the premise e2 : ρ[x 7→ v1] ⇓ v2, G2|G+
2

of (LocalG). We obtain:

(ApplyG)
4.3.2 e2 : ρ[x 7→ v1] ⇓ v2, G2|G+

2

(fun (x:ty)->e2) e1 : ρ ⇓ v2, A0;G2|A+;G+
2

This justifies the correctness of the graphs generated in the rule (LocalG): For i ∈
{0,+}:

LocalGri(x, G1, e, G2) , CallGri
x(ide \ {x

=→ x}, G1) ;G2

Theorem 4.3.2 (Safe Graph Generation). The size-change graphs generated in rules of
table 4.4 and 4.5 are safe.

The proof is in Appendix B.

4.3.5 Approximate semantics with graph generation

As we saw in section 4.3.1, the program points set P includes a new element: ?int. This
element was not used in the definition of the exact semantics (the exact integers and
boolean where used instead). But remember that the size-change principle requires P to
be finite. This is because we need to define an approximate semantics which generates a
finite possible number of judgement forms.

The approximate semantics is given in table 4.6 and 4.7.

Dealing with indefinite integer or boolean values (?int and ?bool)

As you can see in table 4.6 and 4.7, the size-change graphs generation does not make use
of the exact value of integers and boolean and therefore the use of ?int is particularly
appropriated.

One may worries about the fact that the set N is reduced to the single symbol ?int.
More precisely, since two different integers are considered to be equal, the computation of
the closure of the size-change graph could generate a graph for an impossible transitive
call. But this is not a problem since first: it is permitted for the set of size-change graphs
to be an over approximation of the real set of size-change graphs describing the program’s
calls. Secondly, the symbol ?int only appears on the right hand side of the judgment forms
( ⇓ ?int), consequently, there will never be any call occurring at program point ?int!

Finally, the use of ?int brings us a powerful feature: we can now verify that a particular
program terminates for any value of a free variable of type int!

Soundness of the approximation

The following lemma states that the approximation of tables 4.6 and 4.7 is sound:
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Lemma 4.3.3 (Approximation). Suppose P : [] →∗ e : ρ then

(exact semantics) (approximation semantics)

for e′ ∈ subexp(P), e : ρ→ e′ : ρ′, G0|G+ =⇒ e→ e′, G0|G+

for v /∈ N ∪ {true, false}, e : ρ ⇓ v : ρ′, G0|G+ =⇒ e ⇓ v, G0|G+

for n ∈ N e : ρ ⇓ n : [], G0|G+ =⇒ e ⇓?int, G0|G+

for b ∈ {true, false}, e : ρ ⇓ b : [], G0|G+ =⇒ e ⇓?bool, G0|G+

The proof is in Appendix C.

4.3.6 Safe description of the program’s calls

Theorem 4.3.4. Let G0 and G+ be the following sets of size-change graphs:

G0 = { G0
j | j > 0 ∧ ∃ei, G

0
i (0 ≤ i ≤ j) :

P = e0 ∧ (e0 → e1, G
0
1| ) ∧ . . . ∧ (ej−1 → ej, G

0
j | ) }

G+ = { G+
j | j > 0 ∧ ∃ei, G

+
i (0 ≤ i ≤ j) :

P = e0 ∧ (e0 → e1, |G+
1 ) ∧ . . . ∧ (ej−1 → ej, |G+

j ) }

Then:

(i) G0 and G+ are computable,

(ii) G0 and G+ are safe for P

Proof (i) They are computable by exhaustive application of the approximate rules of
tables 4.6 and 4.7 starting with expression P until no new graph or subexpression are
found.

The computation terminates because there is a finite number of possible judgment
forms and size-change graphs (since subexp(P) = P is a finite set).

(ii) Let c be an activable call. In the exact environment based semantics of P we have:

P : [] = s0 → s1 → . . .→ si
c→ si+1

where sk = ek : ρk for k ≤ i+ 1.
By the rules of the exact semantics of 4.4 and 4.5 we have:

si
c→ si+1, G

0
i |G+

i

By theorem 4.3.2, G0
i and G+

i are safe (relatively to the safety definition of SCP 0 and
SCP+ respectively) for the pair (si, si+1).
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For 0 ≤ k ≤ i, we have P : [] →∗ ek : ρk and ek : ρk → ek+1 : ρk+1, G
0
k|G+

k . Thus by
lemma 4.3.3:

ek → ek+1, G
0
k|G+

k for 0 ≤ k ≤ i

relatively to the approximation semantics.
Hence by definition of the sets G0 and G+, G0

i ∈ G0 and G+
i ∈ G+.

�

After computing the two sets defined in theorem 4.3.4 by exhaustive application of
the approximation rules, we can apply the second part of the algorithm of section 3.10 to
decide size-change termination for SCP 0 and SCP+.
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Canonical forms: (ValueG)
v ⇓ v, id=

e |id=
e

(v = e : ρ in canonical form)

Variables: (VarG)
x : ρ ⇓ ρ(x), var0

x 7→|var+
x 7→e′

(ρ(x) = e′ : ρ′)

Integer equality: (EqTrueG)
e1 : ρ ⇓ n : [], | e2 : ρ ⇓ n : [], |

e1 = e2 : ρ ⇓ true : [], ∅|∅

(EqFalseG)
e1 : ρ ⇓ n : [], | e2 : ρ ⇓ m : [], | n 6= m

e1 = e2 : ρ ⇓ false : [], ∅ |∅

Operator: (PredG)
e : ρ ⇓ n : [], G| n > 0

pred e : ρ ⇓ n− 1 : [], ({• =→ •} ∪ {x ↓→ • | x r→ • ∈ G})|∅

(SuccG)
e : ρ ⇓ n : [], G|

succ e : ρ ⇓ n + 1 : [], ({• =→ •} ∪ {• ↓→ x | • r→ x ∈ G})|∅

Function application: (ApplyG)
e : ρ −→

c/if
e′ : ρ′, G|G+ e′ : ρ′ ⇓ v, G′|G′+

e : ρ ⇓ v, (G;G′)|(G+;G′+)

Local definition:

(LocalG)
e1 : ρ ⇓ v1, G1|G+

1 e2 : ρ[x 7→ v1] ⇓ v2, G2|G+
2

let x = e1 in e2 : ρ ⇓ v2, LocalGr0(x, G1, e2, G2)|LocalGr+(x, G+
1 , e2, G

+
2 )

where

idve , {x =→ x | x ∈ fv(e)}
var0

x 7→ , {x =→ •} ∪ {• =→ •}

var+
x 7→e′ , {x =→ •} ∪ {• ↓→ •} ∪ {x ↓→ y | y ∈ fv(e′)}

CallGr0
x(G1, G2) , {• = •} ∪ { y

r→ z | y r→ z ∈ G1} ∪ {y
r→ x | y r→ • ∈ G2}

CallGr+
x (G1, G2) , G−•

1 ∪G•7→x
2

LocalGr0(x, G1, e, G2) , CallGr0
x(id

=
e \ {x

=→ x}, G1) ;G2

LocalGr+(x, G1, e, G2) , CallGr+
x (id=

e \ {x
=→ x}, G1) ;G2

Table 4.4: Lml environment based evaluation semantics with graphs generation
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Conditional:
(IfCondCallG)

if e then e1 else e2 : ρ→ e : ρ, idve|id↓e

(IfTrueCallG)
e : ρ ⇓ true : , |

if e then e1 else e2 : ρ →
if

e1 :ρ, id=
e1
|id↓e1

(IfFalseCallG)
e : ρ ⇓ false : , |

if e then e1 else e2 : ρ →
if

e2 :ρ, id=
e2
|id↓e2

Integer equality:
(EqCondTrueG)

e1 = e2 : ρ→ e1 : ρ, idve1 |id
↓
e1

(EqCondFalseG)
e1 = e2 : ρ→ e2 : ρ, idve2 |id

↓
e2

Operator:
(PredCallG)

pred e : ρ→ e : ρ, idve|id↓e
(SuccCallG)

succ e : ρ→ e : ρ, id↓e|id↓e

Local definition:
(LocalDefCallG)

let x = e1 in e2 : ρ→ e1 : ρ, idve1 |id
↓
e1

(LocalBodyCallG)
e1 : ρ ⇓ v1, G1|G+

1

let x = e1 in e2 : ρ→ e2 : ρ[x 7→ v1], (id=
e2
\ {x =→ x})|id↓e2

Function application:

(OperatorG)
e1e2 : ρ→ e1 : ρ, idve1|id

↓
e1

(OperandG)
e1 : ρ ⇓ v1, |

e1e2 : ρ→ e2 : ρ, idve2 |id
↓
e2

(CallG)
e1 : ρ ⇓ fun (x:ty)->e0 : ρ0, G1|G+

1 e2 : ρ ⇓ v2, G2|G+
2

e1e2 : ρ →
c
e0 : ρ0[x 7→ v2], CallGr0

x(G1, G2)|CallGr+
x (G+

1 , G
+
2 )

(CallRecG)
e1 : ρ ⇓

v︷ ︸︸ ︷
fun f=(x:ty)->e0 : ρ0, G1|G+

1 e2 : ρ ⇓ v2, G2|G+
2

e1e2 : ρ →
c
e0 : ρ0[x 7→ v2, f 7→ v], CallGr0

x(G1, G2)|CallGr+
x (G+

1 , G
+
2 )

Table 4.5: Lml environment based call semantics with graphs generation
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Canonical forms:
(ValueAG)

v ⇓ v, id=
e |id=

e

(v is a function)

(ValueAG’)
n ⇓?int, id=

e |id=
e

(n ∈ N ∪ {?int})

(ValueAG”)
b ⇓?bool, id=

e |id=
e

(b ∈ {true, false, ?bool})

Variables:

(VarAG)

e1e2 ∈ subexp(P) e1 ⇓
{

fun (x : ty)->e0
or fun f = (x : ty)->e0

, | e2 ⇓ v2, |

x ⇓ v2, var0
x 7→|var+

x 7→v2

(VarRecAG)

v︷ ︸︸ ︷
fun f = (x : ty)->e0 ∈ subexp(P)

f ⇓ v, var0
f 7→|var+

f 7→v

(VarLetAG)
let x = e1 in e2 ∈ subexp(P) e1 ⇓ v1, |

x ⇓ v1, var0
x 7→|var+

x 7→v1

Integer equality:
(EqAG)

e1 = e2 ⇓?bool, ∅|∅

Operator:

(PredAG)
e : ρ ⇓ ?int, G|

pred e : ρ ⇓ ?int, ({• =→ •} ∪ {x ↓→ • | x r→ • ∈ G})|∅

(SuccAG)
e : ρ ⇓ ?int, G|

succ e ⇓ ?int, ({• =→ •} ∪ {• ↓→ x | • r→ x ∈ G})|∅

Local definition:

(LocalAG)
e1 ⇓ v1, G1|G+

1 e2 ⇓ v2, G2|G+
2

let x = e1 in e2 ⇓ v2, LocalGr0(x, G1, e2, G2)|LocalGr+(x, G+
1 , e2, G

+
2 )

Function application:

(ApplyAG)
e −→

c/if
e′, G|G+ e′ ⇓ v, G′|G′+

e ⇓ v, (G;G′)|(G+;G′+)

Table 4.6: Lml approximate evaluation semantics with graphs generation
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Conditional:
(IfCondCallAG)

if e then e1 else e2 → e, idve|id↓e

(IfTrueCallAG)
if e then e1 else e2 →

if
e1, id=

e1
|id↓e1

(IfFalseCallAG)
if e then e1 else e2 →

if
e2, id=

e2
|id↓e2

Integer equality:
(EqCondTrueAG)

e1 = e2 → e1, idve1 |id
↓
e1

(EqCondFalseAG)
e1 = e2 → e2, idve2 |id

↓
e2

Operator:
(PredCallAG)

pred e→ e, idve|id↓e
(SuccCallAG)

succ e→ e, id↓e|id↓e

Local definition:
(LocalDefCallAG)

let x = e1 in e2 → e1, idve1 |id
↓
e1

(LocalBodyCallAG)
let x = e1 in e2 → e2, (idve2 \ {x

=→ x})|id↓e2

Function application:
(OperatorAG)

e1e2 → e1, idve1|id
↓
e1

(OperandAG)
e1e2 → e2, idve2 |id

↓
e2

(CallAG)

e1 ⇓
{

fun (x:ty)->e0
or fun f=(x:ty)->e0

, G1|G+
1 e2 ⇓ v2, G2|G+

2

e1e2 →
c
e0, CallGr0

x(G1, G2)|CallGr+
x (G+

1 , G
+
2 )

Table 4.7: Lml approximate call semantics with graphs generation
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4.3.7 Improvements

The improvement described in section 3.11.2 has also been implemented for the core ML
case: the set of program points becomes

P = nodes(P) ∪ {?int, ?bool} instead of subexp(P) ∪ {?int, ?bool}

Then by giving small modifications to the rules (VarAG), (VarRecAG) and (VarLetAG)
we can avoid the problem of variable renaming and at the same time reduce the number
of approximation judgment forms generated.

For instance, the rule (VarRecAG) of table 4.6 has been implemented using the following
definition:

(V arRecAG)
ifunrec ∈ nodes(P)

if ⇓ ifunrec, var0
f 7→|var+

f 7→v

with the following side-conditions:

1. node(ifunrec) = 〈fun f = (x : ty)->, ie0〉

2. v is the expression represented by the node ifunrec.

3. node(if) = 〈f〉

4. The node if belongs to the subtree rooted at node ie0 and represents a free occurrence
of variable f.

The effect of the last side-condition is to limit the scope of the variable f to the body
e0 of the recursively defined function f.

Similar definition are used for rules (VarAG) and (VarLetAG).

4.3.8 Example

In order to understand how the algorithm really works, we now apply it manually on an
example. Consider the following recursively defined function which computes the minimum
of two natural numbers:

min.cml
let rec min x y =
if x = 0 then 0
else
if y = 0 then 0
else
succ (min (pred x) (pred y))

in
min ? ?

;;

(The special character ? is interpreted as ?int by the parser). After removing the syntactic
sugar and having numbered the program subexpressions we obtain the following code:
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min.cml
1: let min =

2: fun f=(x:int)->

3: fun (y:int) ->

4: if x = 0 then 0
else

9: if y = 0 then 0
else

14: (succ 15: (f (pred x) (pred y)))
in

min ? ?;;

Let us apply the rules of tables 4.6 and 4.7 in order to approximate the evaluation and
call semantics of this program. Our goal is to check whether the program is size-change
terminating relatively to the first size-change principle (SCP 0). For this reason, we only
compute the first graph component of the judgement forms:

(ValueAG)
2 ⇓ fun f=(x:int)-> 3 , {• =→ •}

(4.3.2a)

(VarLetAG)
let min= 2 in min ?int ?int ∈ subexp(P) 4.3.2a

min ⇓ 2 , {• =→ •, min =→ •}
(4.3.2b)

(ValueAG)
?int ⇓?int, {• =→ •}

(4.3.2c)

(CallRecAG)
4.3.2b 4.3.2c

min ?int →
c

3 , {• =→ •}
(4.3.2d)

(VarAG)
min ?int ∈ subexp(P) 4.3.2b 4.3.2c

x ⇓?int, {• =→ •, x =→ •}
(4.3.2e)

(PredAG)
4.3.2e

pred x ⇓?int, {• =→ •, x ↓→ •}
(4.3.2f)

(VarRecAG)
fun f=(x:int)-> 3 ∈ subexp(P)

f ⇓ 2 , {• =→ •, f =→ •}
(4.3.2g)

(CallRecAG)
4.3.2g 4.3.2f

f (pred x) →
c

3 , {• =→ •, x ↓→ x}
(4.3.2h)

(ValueAG)
3 ⇓ 3 , {• =→ •, x =→ x}

(4.3.2i)
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(ApplyAG)
4.3.2h 4.3.2i

f (pred x) ⇓ 3 , {• =→ •, x ↓→ x}
(4.3.2j)

(ApplyAG)
4.3.2d 4.3.2i

min ?int ⇓ 3 , {• =→ •}
(4.3.2k)

(CallAG)
4.3.2k 4.3.2c

min ?int ?int →
c

3 , {• =→ •}
(4.3.2l)

(VarAG)
min ?int ∈ subexp(P) 4.3.2k 4.3.2c

y ⇓?int, {• =→ •, y =→ •}
(4.3.2m)

(PredAG)
4.3.2m

pred y ⇓?int, {• =→ •, y ↓→ •}
(4.3.2n)

(CallAG)
4.3.2j 4.3.2n

f (pred x)(pred y) →
c

4 , {• =→ •, x ↓→ x, y
↓→ y}

(4.3.2o)

The following calls also occur:

(LocalBodyCallAG)
P→ min?int ?int, {• =→ •}

(IfFalseCallAG)
4 →

if
9 , {• =→ •, x =→ x, y

=→ y}

(IfFalseCallAG)
9 →

if
14 , {• =→ •, x =→ x, y

=→ y}

(SuccCallAG)
succ 15 → 15 , {• ↓→ •, x =→ x, y

=→ y,min
=→ min}

We can now exhibit a loop activated at control point 4 :

P→ min ?int ?int →
c

4 →
if

9 , {• =→ •, x =→ x, y
=→ y,min

=→ min}

9 →
if

14 , {• =→ •, x =→ x, y
=→ y,min

=→ min}

14 →
pred

15 , {• ↓→ •, x =→ x, y
=→ y,min

=→ min}

15 →
c

4 , {• =→ •, x ↓→ x, y
↓→ y}

By composing the call size-change graphs, we obtain the graph {• ↓→ •, x ↓→ x, y
↓→ y}

which describes the loop 4 →∗ 4 .
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Since the graph contains an arc of type x
↓→ x, the loop is descending. By applying

exhaustively all the rules, one can check that this is the only possible loop. Hence the
program is size-change terminating. And since we use the special symbol ?int, we know
that the function min terminates for any value of the parameters.

Here is the output of the analysis obtained when running my implementation of the
algorithm on the min.cml example:

$ ./sct.opt.exe -ml min.cml
Exhaustive application of the judgment form rules ...
Number of jf:54
Preparing for the closure computation ...
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Computation of the closure by graph composition ...
Loops extraction ...
Loops analysis ...
Program is size change terminating!
All the loops are descending:
4->*4,[*>*, x>x, y>y][9, 14, 15]
9->*9,[*>*, x>x, y>y][14, 15, 4]
14->*14,[*>*, x>x, y>y][15, 4, 9]
15->*15,[*>*, x>x, y>y][4, 9, 14]
Program is terminating on all input values!
Execution time: 0.02s

Note that the four detected loops ( 4 →∗ 4 , 9 →∗ 9 , 14 →∗ 14 , 15 →∗ 15 ) are
in fact the same one.

We have verified with this example that the new algorithm works better than the
first approach: it succeeds in detecting termination of the program min whereas the first
approach failed.

4.3.9 Results

This section provides the results obtained on several interesting examples.

Infinite loop

The following program loops infinitely:

loop.cml
let loop =

fun loop=(x:int)-> 3: (loop x)
in

loop 0;;

As expected it is not size-change terminating:
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$ ./sct.opt -ml loop.cml
Number of jf:14
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Program is not size change terminating! The critical loops are:
3->*3,[*=*, x=x][]
=== SIZE -CHANGE PRINCIPLE FOR HIGHER -ORDER EXPRESSION ===
Program is not size change terminating! The critical loops are:
3->*3,[x=x][]

Program is not size -change terminating.

Ackerman’s function

The ackerman function can be defined in two ways:

• First using church numerals as we did in the λ-calculus case:

ackerman.chnum.cml
let b =

fun g -> fun n -> 4: (n g 8: (g 1))
in

let suc =
fun k -> fun s -> fun z -> 15: (s 17: (k s z))

in
let two =

fun s -> fun z -> (s (s z))
in

let three =
fun s -> fun z -> 33: (s 35: (s 37: (s z)))

in
((fun m -> ((m b) suc) two) three);;

In that case, the second size-change principle succeeds in detecting the SCT condition:

$ ./sct.opt -ml ackerman_chnum.cml
Number of jf:119
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Program is not size change terminating! The critical (ie. not
descending) loops are:
4 - >*4 ,[*=*][33]
4->*4,[][8]
8->*8,[][4]
15->*15,[s=s, z=z][17]
17->*17,[s=s, z=z][15]
33->*33,[][4, 8, 4]
33 - >*33 ,[*=*][4]
35->*35,[][4, 33]
37->*37,[][4, 33, 35]

=== SIZE -CHANGE PRINCIPLE FOR HIGHER -ORDER EXPRESSION ===



4.3. Second approach 64

Program is size change terminating! All the loops are descending:
4->*4,[g>g][33]
8->*8,[g>g][4]
15->*15,[k>k, s=s, z=z][17]
17->*17,[k>k, s=s, z=z][15]
33->*33,[s>s][4]
35->*35,[s>s][4, 33]
37->*37,[s>s][4, 33, 35]

Program is terminating on all input values!

• The Lml language allows us to define ackerman’s function intuitively using the natural
recursive definition:

ackerman.cml
let ackerman =

fun ackerman =(m)-> fun n ->
4: if m = 0 then
succ n

else
10: if n = 0 then

14: (ackerman (pred m) 1)
else

20: (( ackerman (pred m)) 25: (ackerman m (pred n)))
in

ackerman ? ?;;

In that case, the first size-change principle succeeds in detecting the SCT condition:

$ ./sct.opt -ml ackerman.cml
Number of jf:74
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Program is size change terminating! All the loops are descending:
4->*4,[m>m][10, 14, 4, 10, 20, 25]
4->*4,[n>n, m=m][10, 20, 25]
4->*4,[m>m, *=*][10 , 14]
10->*10,[n>n, m=m][20, 25, 4]
10->*10,[m>m][14, 4, 10, 20, 25, 4]
10->*10,[m>m, *=*][14 , 4]
14->*14,[m>m][4, 10, 20, 25, 4, 10]
14->*14,[m>m, *=*][4 , 10]
20->*20,[n>n, m=m][25, 4, 10]
20->*20,[m>m][4, 10, 20, 25, 4, 10]
20->*20,[m>m, *=*][4 , 10]
25->*25,[m>m][4, 10, 14, 4, 10, 20]
25->*25,[n>n, m=m][4, 10, 20]

=== SIZE -CHANGE PRINCIPLE FOR HIGHER -ORDER EXPRESSION ===
Program is not size change terminating! The critical loops are:
4->*4,[m=m][10, 20, 25]
4->*4,[][10, 20]
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10->*10,[m=m][20, 25, 4]
10->*10,[][14, 4, 10, 14, 4]
14->*14,[][4, 10]
20->*20,[m=m][25, 4, 10]
20->*20,[][4, 10]
25->*25,[][4, 10, 14, 4, 10, 20]
25->*25,[m=m][4, 10, 20]

Program is terminating on all input values!

With this second definition of the function we obtain a more general result: the
program terminates for any value of the input integers. This is due to the use of the
special symbol ?int.

Counter-example

It is easy to build a counter-example. Consider the following program:

counter.cml
let counter =

fun counter =(x:int)-> 3:
if x = 0 then

7: (counter (succ x))
else

1
in

counter 0;;

This program is obviously terminating however it is not size-change terminating:

$ ./sct.opt -ml counter.cml
Exhaustive application of the judgment form rules ...
Number of jf:29
Preparing for the closure computation ...
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Computation of the closure by graph composition ...
Loops extraction ...
Loops analysis ...
Program is not size change terminating!
The critical (ie. not descending) loops are:
3 - >*3 ,[*=*][7]
7 - >*7 ,[*=*][3]

=== SIZE -CHANGE PRINCIPLE FOR HIGHER -ORDER EXPRESSION ===
Computation of the closure by graph composition ...
Loops extraction ...
Loops analysis ...
Program is not size change terminating!
The critical (ie. not descending) loops are:
3->*3,[][7]
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7->*7,[][3]

Program is not size -change terminating.

Errors

Consider the following program:

exception.cml
let desc =

fun desc=(y:int)-> 3: (desc (pred y))
in

desc ?;;

It is size-change terminating:

$ ./sct.opt -ml error.cml
Number of jf:16
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Program is size change terminating! All the loops are descending:
3->*3,[*=*, y>y][]

It terminates because there is an infinite descent which eventually causes an error. Now,
let us compose the program loop, which loops infinitely, with the program desc:

loopexception.cml
let loop =

fun loop=(x:int)-> loop x
in

let desc =
fun desc=(y)-> 8: (desc (pred y))

in
(loop (desc ?));;

The program is still terminating:

$ ./sct.opt -ml looperror.cml
Number of jf:23
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Program is size change terminating! All the loops are descending:
8->*8,[*=*, y>y][]
Program is terminating on all input values!
Execution time: 0.s

The reason is that with the call-by-value evaluation, the error occurs before the evalu-
ation of the loop function.
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Lucas sequences

Lucas sequences are generalization of Fibonacci numbers:

lucas.cml
1: let add =

fun add=(x)-> fun y -> 4:
if x = 0 then y
else

9: (add (pred x) (succ y))
in

let sub =
fun sub=(x)-> fun y -> 19:
if y = 0 then x
else

24: (sub (pred x) (pred y))
in

let times =
fun times=(x)-> fun y -> 34:
if y = 0 then 0
else

39: ((add x) 43: ((times x) (pred y)))
in

let lucas =
fun lucas=(p)-> fun q -> fun n -> 53:
if n = 0 then 0
else

58:
if n = 1 then 1
else

63: ( 64: (sub 66: ((times p) 70: ((lucas p q) (pred n))))

78: ((times q) 82: ((lucas p q) (pred (pred n)))))
in

lucas ? ? ?;;

$ ./sct.opt -ml lucas.cml
Number of jf:208
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Program is size change terminating! All the loops are descending:
4->*4,[x>x, *=*][9]
9->*9,[x>x, *=*][4]
19->*19,[x>x, y>y, *=*][24]
24->*24,[x>x, y>y, *=*][19]
34->*34,[y>y, x=x][39, 43]
39->*39,[y>y, x=x][43, 34]
43->*43,[y>y, x=x][34, 39]
53->*53,[n>n, p=p, q=q][58, 63, 64, 66, 70]
58->*58,[n>n, p=p, q=q][63, 64, 66, 70, 53]
63->*63,[n>n, p=p, q=q][64, 66, 70, 53, 58]
64->*64,[n>n, p=p, q=q][66, 70, 53, 58, 63]
66->*66,[n>n, p=p, q=q][70, 53, 58, 63, 64]
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70->*70,[n>n, p=p, q=q][53, 58, 63, 64, 66]
78->*78,[n>n, p=p, q=q][82, 53, 58, 63]
82->*82,[n>n, p=p, q=q][53, 58, 63, 78]
Program is terminating on all input values!

Y combinator

Instead of using the let rec feature of the Lml language, one can use the Y -combinator.
However this makes the analysis run slower since the Y combinator is expanded and pro-
duces more judgement forms.

Moreover each recursively defined function must have its own copy of the Y combinator.
For instance using the Y combinator, the lucas example has to be rewritten like this:

lucas.ycomb.cml
let add =
let y = fun p -> (fun q -> p (fun s -> q q s)) (fun t -> p (fun u -> t t
u))
in

y (fun f x y ->
if x = 0 then y
else

f (pred x) (succ y)
)

in

(* precondition: x>=y *)
let sub =
let y = fun p -> (fun q -> p (fun s -> q q s)) (fun t -> p (fun u -> t t
u))
in

y (fun f x y ->
if y = 0 then x
else

f (pred x) (pred y)
)

in

let times =
let y = fun p -> (fun q -> p (fun s -> q q s)) (fun t -> p (fun u -> t t
u))
in

y (fun f x y ->
if y = 0 then 0
else

add x (f x (pred y)))
in

let lucas =
let y = fun p -> (fun q -> p (fun s -> q q s)) (fun t -> p (fun u -> t t
u))
in
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y
(fun f p q n ->

if n = 0 then 0
else

if n = 1 then 1
else

sub
(times p (f p q (pred n)))
(times q (f p q (pred (pred n))))

)
in
lucas ? ? ?
;;

And the size-change termination is still detected:

$ ./sct.opt -ml lucas.ycomb.cml
Number of jf:418
=== SIZE -CHANGE PRINCIPLE FOR INTEGERS ===
Program is size change terminating! All the loops are descending:
28->*28,[x>x, *=*][33]
33->*33,[x>x, *=*][28]
67->*67,[x>x, y>y, *=*][72]
72->*72,[x>x, y>y, *=*][67]
106->*106,[y>y, x=x][111 , 115]
111->*111,[y>y, x=x][115 , 106]
115->*115,[y>y, x=x][106 , 111]
149->*149,[n>n, p=p, q=q][154 , 159, 160, 162, 166]
154->*154,[n>n, p=p, q=q][159 , 160, 162, 166, 149]
159->*159,[n>n, p=p, q=q][160 , 162, 166, 149, 154]
160->*160,[n>n, p=p, q=q][162 , 166, 149, 154, 159]
162->*162,[n>n, p=p, q=q][166 , 149, 154, 159, 160]
166->*166,[n>n, p=p, q=q][149 , 154, 159, 160, 162]
174->*174,[n>n, p=p, q=q][178 , 149, 154, 159]
178->*178,[n>n, p=p, q=q][149 , 154, 159, 174]

However the performance are poor: the analysis runs in 4.196 seconds instead of 0.65sec-
ond with the first version.

4.3.10 Implementation details

The code consists in 1183 lines (36 kilobytes) of commented Objective Caml code. It
reuses the common tools developed for the λ-calculus case. There is a separate module
Sct coreml for the Lml part of the implementation which contains a class deriving from
the main class defined in the module Sct.

This class contains the methods which constructs the judgement forms for all the rules
of the approximation semantics.

A parser and a lexer for Lml are also implemented.
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Data structure

The following data structure is used to store nodes of the abstract tree during the parsing
of the expression:

type ml_expr =

MlVar of ident

| Fun of ident * ml_expr

| MlAppl of ml_expr * ml_expr

| Let of (ident * (ident list) * ml_expr) list * ml_expr

| Letrec of (ident * (ident list) * ml_expr) list * ml_expr

| If of ml_expr * ml_expr * ml_expr

| MlInt of int

| AnyInt

| MlBool of bool

| EqTest of ml_expr * ml_expr

| Pred

| Succ

;;

The abstract tree is then converted into an array of subexpressions nodes. The type of
the nodes is:

type ml_node =

VarN of int

| FunN of int * sub_expr

| FunrecN of int * int * sub_expr

| ApplN of sub_expr * sub_expr

| LetN of int * sub_expr * sub_expr

| IfN of sub_expr * sub_expr * sub_expr

| MlIntN of int

| AnyIntN

| MlBoolN of bool

| EqTestN of sub_expr * sub_expr

| PredN of sub_expr

| SuccN of sub_expr

The data structure for size-change graph is the same as the one defined in section 3.12.1.
The following types give the different flavors of judgement forms:

type ml_calltype = Operator | Operand | FuncApp | IfThenElse |

IfCond | EqCond | PredSucc | LocalDef | FuncAppStar

type ml_evaltype = Normal

type ml_jftype = Call of ml_calltype | Evaluation of

ml_evaltype ;;
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The generated component in judgment forms is now a pair of two sets of size-change
graph arcs, one for each of the two different instances of the size-change principle:

type ml_jfgen = scg_arc list * scg_arc list

The judgement form type is:

type ml_jf = ml_jftype * ml_jfgen

Parser

The parser developed with ocamlyacc and ocamllex recognizes an extended version of the
Lml syntax defined in 4.1.1. It accepts let rec structures and the special symbol ?int.

The following code is an example of a Lml program which can be parsed:

let rec f x =

if x = 0 then 0

else

succ (f (pred x))

in

f ?

;;

Performance

Table 4.9 gives the times it takes to run the analysis on the different Lml examples using
the natively compiled version of the Objective Caml program (these figures have been
measured on a laptop computer equipped with a P3 2.4Ghz processor, 512Mb of RAM and
running Windows XP).

Examples given in the report are typeset in bold:
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Lml expression Time
min.cml 0.02s
min.ycomb.cml 0.08s
min.chnum.cml 3.745s
counter.cml 0.00s
fibo.cml 0.06s
lucas.cml 0.65s
lucas.ycomb.cml 4.196s
ackerman.cml 0.05s
ackerman.chnum.cml 0.10s
loop.cml 0.00s
error.cml 0.00s
looperror.cml 0.00s

Table 4.9: Performance of “native” Lml analysis



Chapter 5

Conclusion and further directions

5.1 Brief summary

The techniques proposed in [5] have been implemented to obtain a termination analyzer
for higher-order λ-calculus expressions.

Then, since λ-calculus is more a theoretical tool than a programming language (it can
be a hard task to program mathematical functions in λ-calculus) we concentrated on the
adaptation of the principle to a basic higher-order functional language.

The right approach has consisted in following the steps of [5] to redefine the size-
change principle to the particular case of our mini-language. This final algorithm detects
size-change termination by doing simultaneous analysis of higher-order values and ground
type values like integers.

This project shows that the size-change principle introduced in [6] is a powerful tool
for termination analysis.

5.2 Personal enrichment

Throughout this project, I learnt how to do research in theoretical computer science, espe-
cially while I was working on the extension of the principle to a small functional language.
The research I carried out required me to state and prove lemmas and theorems justifying
the correctness of the algorithm.

5.3 Possible extension

The Lml language has been highly restricted to facilitate the adaptation of the size-change
principle.

A possible continuation of this project can consist in extending the algorithm to handle
a more complex language. It is possible to use the language of [7] which features sequential
composition, storage locations and references (as it is implemented in Objective Caml [4]).
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One way to deal with locations could consist in extending environments to make them
include locations in addition to free variables. The graph basis of size-change graphs would
then contain free variables and storage locations.

Support for other language features could be also added: tuples with operators fst and
snd, list and user defined data structures.

It could be interesting to add while and for loop structures. But then, the call
semantics has to be defined very carefully in order to preserve the property that non-
termination is characterized by the presence of infinite call sequences.



Appendix A

Proof of Lemma 4.3.1

The proof of this lemma follows the same steps as the proof of lemma 4 in [5]. However
there are more difficulties to handle here. Indeed, in Lml errors can occur during evalua-
tion. Errors are therefore new causes of program termination. Consequently, we need to
consider new cases in this proof and to use the rules of the error semantics (table 4.2).

⇐ We show that e : ρ ⇓ or e � implies that any call chain starting from e is finite.
We proceed by induction on the proof showing that e : ρ ⇓ or e �: we assume that

the property we want to show is true for any evaluation or error occurring before the rule
concluding e : ρ ⇓ or e �.

Consider the different cases:

• (ValueG) Then e is a canonical form. Hence there is no call chain starting from e.

• (VarG) e is a variable, there is no call chain starting from it.

• (EqTrueG) e ≡ e1 = e2. The only calls occurring at state e : ρ are e : ρ→ e1 : ρ
from rule (EqCondTrueG) and e : ρ→ e2 : ρ from rule (EqCondFalseG). By using
the induction hypothesis on the premise of rule (EqTrueG), we conclude that there
is no infinite call sequence starting from e.

• (EqFalseG) see (EqTrueG)

• (PredG), (SuccG), (LocalG), (ErrOp1) , (ErrOp2), (ErrOp3), (ErrEq1), (ErrEq2)

Proof similar to (EqTrueG) : the only possible calls from state e : ρ are call of type
e : ρ→ e′ : ρ such that there is an evaluation e′ : ρ ⇓ v for some v in the premise of
the rule.

• (ApplyG)

There are two cases for e:

1. e ≡ if ec then e1 else e2

Consider the two possibilities for the first premise of (ApplyG):
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– Suppose that the first premise is e : ρ →
if

e1 : ρ, concluded by rule (IfTrue-

CallG).
There are two possible calls from e : ρ:

∗ e : ρ →
if

ec : ρ In that case by induction on the first premise of rule

(IfTrueCallG), we know that there is not infinite call from ec.

∗ e : ρ →
if

e1 : ρ In that case by induction on the second premise of rule

(ApplyG) we know that there is not infinite call from e1.

– Suppose that the first premise is e : ρ →
if

e2 : ρ, concluded by rule (IfFalse-

CallG). The proof is the same as the previous case.

Any call form e leads to an expression from which there is no infinite call chain.
Hence there is no infinite call chains from e.

2. e ≡ e1e2

Suppose that the first premise of (ApplyG) is e : ρ →
c
e0 : ρ0[x 7→ v2] concluded

using rule (CallG).

From state e : ρ, the only possible states which can be called are e1 : ρ, e2 : ρ,
and e0 : ρ0[x 7→ v2]. But all these states are evaluated in the premise of the rule
(CallG) or (ApplyG). Hence by induction, there is no infinite call chain starting
from e : ρ.

The same reasoning is done when the rule (CallRecG) is used instead of (CallG).

• (ErrIf1) e ≡ if ec then e1 else e2

Since evaluating e causes an error, there is no evaluation of e (see lemma 4.1.1).
Therefore the rules (IfTrueCallG) and (IfFalseCallG) cannot be used.

Hence the only possible call from e is e→ ec concluded by the rule (IfCondCallG).

Applying the induction on the premise ec � of rule (ErrIf1) we obtain the desired
result.

• (ErrIf2) e ≡ if ec then e1 else e2

The only possible call from e are e→ ec concluded by the rule (IfCondCallG) and
e→ e1 concluded by the rule (IfTrueCallG).

In both case, by applying the induction on one of the premise of (ErrIf2) we obtain
the desired result.

• (ErrIf3) Same as (ErrIf2).

• (ErrLocalDef1), (ErrLocalDef2), (ErrApp1), (ErrApp2), (ErrApp3)

Similar to cases (ErrIf1) and (ErrIf2).
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⇒ Suppose that P : [] →∗ e : ρ and all call chains from e : ρ are finite.
We prove that e : ρ ⇓ by induction on the length n of the longest call chain from e : ρ.
If n = 0 then there is no possible call from e : ρ. Therefore e must be in canonical

form. Hence by rule (ValueG) : e : ρ ⇓ e : ρ.
If n > 0 then the only possible cases are:

• e ≡ e1e2

Since the program is well-typed the expression e1 in the application e1e2 must be
a function. We assume that e1 ≡ fun (x:ty)->e0 : ρ0 (the proof is similar if
e1 ≡ fun f=(x:ty)->e0 : ρ0).

By rule (OperatorG) there is a call e1e2 → e1. The longest call chain from e1 is
therefore shorter than the longest call chain from e. Consequently, by the induction
hypothesis:

– either e1 � and in that case, by the rule (ErrApp1) of table 4.2 e �
– either there exist v1 such that e1 : ρ ⇓ v1. By rule (OperandG) we then conclude

e1e2 : ρ→ e2 : ρ. Again by induction:

∗ either e2 � and in that case by the rule (ErrApp2) of table 4.2 we conclude
e �.

∗ either there exist v2 such that e2 : ρ ⇓ v2 and then we can apply the rule
(CallG) to conclude that e1e2 : ρ→ e0 : ρ0[x 7→ v2].
We now use a third time the induction hypothesis:

· either e0 : ρ0[x 7→ v2] � and in that case, by the rule (ErrApp3) we
conclude e �.

· either e0 : ρ0[x 7→ v2] ⇓ v for some v. This gives use all the premises for
the rule (ApplyG), thus e ≡ e1e2 : ρ ⇓ v.

• e ≡ if ec then e1 else e2

The proof follow exactly the same outline as for the previous case. The only dif-
ferences are the rules used: (IfCondCallG), (IfTrueCallG), (IfFalseCallG), (ApplyG)
and the error rules (ErrIf1), (ErrIf2) and (ErrIf3).

• e ≡ e1 = e2

Similar proof using rules (EqCondTrueG), (EqCondFalseG), (EqTrueG), (EqFalseG)
and the error rules (ErrEq1) and (ErrEq2).

• e ≡ pred e′

Similar proof using rules (PredCallG) and (PredG) and the error rules (ErrOp1) and
(ErrOp2).

• e ≡ succ e′

Similar proof using rules (SuccCallG) and (SuccG) and the error rules (ErrOp3).
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• e ≡ let x = e1 in e2

Similar proof using rules (LocalDefCallG), (LocalBodyCallG), (LocalG) and the error
rules (ErrLocalDef1), (ErrLocalDef2).
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Appendix B

Proof of Theorem 4.3.2

We give a separate proof for the two principles:

1. Higher-order graphs (SCP+):

These are basically the same graphs as in the λ-calculus case (see theorem 2 of [5] for a
complete proof). The only differences come from the new structures introduced in the
syntax of Lml (let, let rec, if) and the integers and boolean operators (succ,
pred). The new rules are (EqTrueG), (EqFalseG), (PredG), (SuccG), (LocalG), (If-
CondCallG), (IfTrueCallG), (IfFalseCallG), (PredCallG), (SuccCallG),(EqCondTrueG),
(EqCondFalseG), (CallRecG),(LocalDefCallG), (LocalBodyCallG).

– The proof for the rule (LocalG) has been given in remark 4.3.3.

– For (EqTrueG), (EqFalseG), (PredG), (SuccG), the generated graphs are the
empty set ∅ which is always safe.

– For (IfCondCallG), (IfTrueCallG), (IfFalseCallG), (PredCallG), (SuccCallG),
(EqCondTrueG), (EqCondFalseG), (CallRecG), (LocalDefCallG), (LocalBody-
CallG)

the jugdement forms are all of type e→ esub, |id↓esub where esub is a subexpres-
sion of e. Therefore these graphs are safe.

2. Ground-type graphs (SCP 0):

We show the safety property by induction on the proof of s ⇓ s′, G| or s→ s′, G| .

We just give a proof for the rule (PredG):

– (EqTrueG), (EqFalseG)

In these two rules, the generated graph has no arcs therefore it is safe.

– (ValueG) id=
e is safe for (v, v). This is immediate by definition of arc safety.

– (VarG) Arc x
=→ • is safe because x : ρ(x) = ρ(x) = ρ(x)(•).

Consider the arc • =→ •.
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– Suppose the type of x is a ground type, int for instance. The only possible
evaluation of x : ρ is x : ρ ⇓ n : [] where n ∈ N.
But ⇓ is deterministic therefore ρ(x) = n : [].
Using the rule (ValueG) we have n : [] ⇓ n : []. Consequently x : ρ and
n : [] evaluate to the same number therefore x : ρ =0 n : []. Hence we have:
x : ρ(•) = x : ρ =0 n : [] = ρ(x) = ρ(x)(•)

– if x is a higher-order value then the type of ρ(x) is also a higher-order
function, therefore they are considered to be equal (relatively to definition
4.3.1).

The arc • =→ • is therefore safe.

– (OperatorG), (OperandG), (LocalDefCallG), (PredCallG), (EqCondTrueG), (Eq-
CondFalseG) and (IfCondCallG)

All these rules are axioms. The conclusion is a judgment form of type e : ρ →
e′ : ρ with the generated graph idve. Consider an arc x

=→ x ∈ idve where
x ∈ fv(e) then

e : ρ(x) = ρ(x) = e′ : ρ(x)

– (IfTrueCallG)

The conclusion judgement form is if e then e1 else e1︸ ︷︷ ︸
eif

: ρ →
if

e1 : ρ The gen-

erated graph is id=
e1

= idve1 ∪ {•
=→ •}. The arcs of idve1 are safe for the same

reason as in the previous case.

Consider the arc • =→ •. There are two possibilities:

– eif is a higher-order value: Γ ` eif : ty1 → ty2 then Γ ` e1 : ty1 → ty2 and

eif : ρ(•) = eif : ρ �0 e1 : ρ = e1 : ρ(•)

– eif is a ground type value. For instance Γ ` eif : int then Γ ` e1 : int.
Suppose that e1 ⇓ v then, using the conclusion of the rule (IfTrueCallG)
we can apply the rule (ApplyG):

(ApplyG)
eif : ρ →

if
e1 : ρ′, id=

e1
| e1 : ρ′ ⇓ v : , |

eif : ρ ⇓ v, |
Since eif and e1 both evaluate to v we have eif : ρ =0 e1 : ρ. Consequently:

eif : ρ(•) = eif : ρ =0 e1 : ρ = e1 : ρ(•)

Since ⇓ is deterministic, v is the only possible evaluation of eif . Therefore
the arc • =→ • is safe for the call eif : ρ → e1 : ρ.

– (IfFalseCallG) same as (IfTrueCallG)
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– (SuccCallG)

The graph generated is id↓e2 = idve2 ∪ {•
↓→ •}. The arcs of idve2 are safe (same

explanation as for rule (OperatorG)).

The expression succ e and e are of type int.

Suppose e evaluates to n then by using the rule (SuccG) we have: succ e ⇓
n + 1. These are the only possible evaluation since ⇓ is deterministic.

Since n+ 1 > n we have:

succ e : ρ(•) = succ e : ρ �0 e : ρ = e : ρ(•)

The arc {• ↓→ •} is therefore safe.

– (LocalBodyCallG)

The conclusion judgement form is let x = e1 in e2︸ ︷︷ ︸
elet

: ρ→ e2 : ρ[x 7→ v1]

The arcs y
=→ y with x 6= y are safe. The proof is the same as in rule (Opera-

torG). Note that the arc x
=→ x has not been included in the graph. The reason

is that the possibly free occurrences of x in elet and the free occurrences of x in
e2 refer to two different variables (bound in two different places in the program).

Consider the arc • =→ •. There are two possibilities:

– elet is a higher-order value: Γ ` elet : ty1 → ty2 then Γ ` e2 : ty1 → ty2 and

elet : ρ(•) = elet : ρ �0 e2 : ρ = e2 : ρ(•)
– elet is a ground type value. For instance Γ ` elet : int then Γ ` e2 : int.

Suppose that e2 : ρ[x 7→ v1] ⇓ v. Using this evaluation in conjunctions with
the premise of rule (LocalBodyCallG) we can apply the rule (LocalG):

(LocalG)
e1 : ρ ⇓ v1, | e2 : ρ[x 7→ v1] ⇓ v2, |

elet : ρ ⇓ v2, |
Since elet and e2 both evaluate to v2 we have:

elet : ρ(•) = elet : ρ =0 e2 : ρ = e2 : ρ(•)

Since ⇓ is deterministic, v2 is the only possible evaluation of elet. Therefore
the arc • =→ • is safe for the call elet : ρ → e2 : ρ[x 7→ v1].

– (PredG)

The conclusion of the rule (PredG) tells us that pred e ⇓ n − 1. and by the
rule (ValueG), n-1 ⇓ n-1.

By the determinism of the relation ⇓, these are the only possible evaluations for
pred e and n. Hence:

s(•) = pred e �0 n− 1 = s′(•)
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This justifies the safety of the arc • =→ •.
Now suppose that x→ • ∈ G then

e : ρ(x) = ρ(x) and n : [](•) = n : []

Suppose that ρ(x) ⇓ q. By rule (ValueG) we have n : [] ⇓ n : [] therefore by
induction q ≥ n.

Since pred e : ρ(x) = ρ(x), we have pred e : ρ(x) ⇓ q. Moreover n − 1 : [] ⇓
n− 1 : [].

By determinism, these are the only possible evaluations. Since q ≥ n > n − 1,

the arc x
↓→ • is safe.

– (SuccG) the proof is symmetrical to the proof of (PredG).

– (LocalG) see remark 4.3.3.

– (ApplyG) This is due to the fact that the safety property is preserved by graph
composition. This is shown in proof of theorem 2 in the Appendix of [5].

– (CallG) See proof for rule (CallRecG) below.

– (CallRecG)

– Arc • =→ •.
The proof is similar to the case of rule (IfFalseCallG), there are two cases:
e1e2 is a higher-order value or a ground type value. Expression e0 and e1e2
are of the same type. Suppose that it is a higher-order value then the by
definition 4.3.1 they are equal. Now suppose it is a ground type value and
assume that e0 : ρ0[x 7→ v2, f 7→ v] ⇓ v′ then by applying the rule (ApplyG)
we have e1e2 ⇓ v′. Hence the states e1e2 : ρ and e0 : ρ0[x 7→ v2, f 7→ v]
evaluate to the same ground type value. This justifies the safety of arc
• =→ •.

– Arc y
r→ z where y

r→ z ∈ G1.
x and f are not free in v therefore z /∈ {x, f}
By induction G1 is safe for (e1 : ρ, fun f=(x:ty)->e0 : ρ0), therefore ρ(y) �
ρ0(z) Thus:

e1e2 : ρ(y) = ρ(y) � ρ0(z) = e0 : ρ0[x 7→ v2, f 7→ v](z)

The last equality is justified by the fact that z /∈ {x, f}.
Hence the arc y

r→ z is safe.

– Arc y
r→ x where y

r→ • ∈ G2.
By safety of G2, we have ρ(y) � v2. Thus:

e1e2 : ρ(y) = ρ(y) � v2 = e0 : ρ0[x 7→ v2, f 7→ v](x)

Hence the arc y
r→ x is safe.
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Appendix C

Proof of Lemma 4.3.3

This proof follows the same directions as its counterpart in the λ-calculus case (see proof
of lemma 10 and lemma 11 of [5]).

We proceed by induction on the size of the proof concluding e : ρ→ e′ : ρ′, e : ρ ⇓ v : ρ′,
e : ρ ⇓ n : ρ′ or e : ρ ⇓ b : ρ′: let us assume that the lemma holds for all calls and evaluations
performed in the computation before the concluding rule is applied.

We now proceed by cases analysis on the rule applied to conclude e : ρ → e′ : ρ′,
e : ρ ⇓ v : ρ′, e : ρ ⇓ n : ρ′ or e : ρ ⇓ b : ρ′.

For each case, we show that some rule in the approximation semantics can be applied
to give the corresponding conclusion:

• Base cases: Rule (ValueG) is modeled by rules (ValueAG), (ValueAG’) and (Val-
ueAG”) in the approximation semantics. Rules (EqTrueG) and (EqFalseG) are mod-
eled by the rule (EqAG). Rules (IfCondCallG), (IfTrueCallG), (IfFalseCallG), (Eq-
CondTrueG), (EqCondFalseG), (PredCallG), (SuccCallG), (LocalDefCallG), (Local-
BodyCallG), (OperatorG), (OperandG) are modeled by the corresponding rules with
the suffix “AG” instead of “G” in the approximation semantics.

For all these cases, the approximation rules are the same as their exact semantics
counterparts after removal of the environment component and removal of a premise
for (OperandA), (LocalBodyCallA), (IfTrueCallA), (IfFalseCallG), (EqTrueG) and
(EqFalseG).

The graph generated are the same in the approximation rules (graphs generation is
not influenced by the environment).

• (VarG): Suppose the variable is z. We have P : [] →∗ z : ρ and z : ρ ⇓ ρ(z) where
ρ(z) = e′ : ρ′.

The call sequence P : [] →∗ z : ρ starts with an empty environment and finishes with
the environment ρ which is not empty (since z ∈ dom(ρ)).

The only way z can be bound is by the use of rules (CallG), (CallRecG) or (Local-
BodyCallG), the only rules which extend the environment.
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– Suppose the variable z corresponds to the variable f bound in the rule (Call-

RecG). Since the first premise of (CallRecG) is e1 : ρ ⇓
v︷ ︸︸ ︷

fun f = (x : ty)->e0 : ρ0
then fun f = (x : ty)->e0 must be a subexpression of P.

Moreover, in the conclusion of the rule, the variable z = f is bound to the value
v. Therefore ρ(z) = v ≡ fun f = (x : ty)->e0 : ρ0.

Hence we can apply the rule (VarRecAG) to obtain the required judgment form.

– Suppose the variable z correspond to the variable x bound in the rule (CallG)
or (CallRecG).

These rules require that e1e2 ∈ subexp(P). By applying the induction hypothesis
to the premises of rule (CallG) or (CallRecG) we obtain the premises of rule
(VarAG). Thus we can conclude the required judgement form.

– Suppose the variable z correspond to the variable x bound in the rule (LocalG).

This rule requires that let x = e1 in e2 ∈ subexp(P). By applying the in-
duction hypothesis to the first premises of rule (LocalG) we obtain the second
premise of rule (VarLetAG). Thus we can conclude the required judgement form.

• (PredG), (SuccG): By applying the induction hypothesis on the first premise of
(PredG) and (SuccG) we have:

e : ρ ⇓?int, G0|G+

By applying the rule (PredAG) and (SuccAG) we obtain the required conclusion with
the same generated graph as in (PredG) and (SuccG).

• (LocalG), (ApplyG), (CallG) and (CallRecG): By applying the induction hypothesis
on the premises of these rules we obtain the premises for the corresponding rules (Lo-
calAG), (ApplyAG), (CallAG) and (CallRecAG). Thus we can conclude the required
result.
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