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Overview

» Safety is originally a syntactic restriction for higher-order
grammars with nice automata-theoretic characterization.

» In the context of the A-calculus it gives rise to the Safe
A-calculus.

» The loss of expressivity can be characterized in terms of
representable numeric functions.

» The calculus has a “succinct” game-semantic model.
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Part | : The Safety
Restriction



Higher-order grammars

Notation for types: Ay — (Ax — (... (A, — 0))...) is written
(Al, A2, e ,An, O).

» Higher-order grammars (Maslov, 1974) are used as generators
of word languages, trees or graphs.

» A higher-grammar is formally given by a tuple (X, N, R, S)
(terminals, non-terminals, rewritting rules, starting symbol)

» Example of a tree-generating order-2 grammar:

g

/ AN
S — Ha a /g\
Hz° — F(gz) o
Folo°) — ¢(o(F h)) h

Non-terminals: S : 0, H: (0,0) and F : ((o,o),.o). Terminals:
a:oandg,h:(o,0).
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» First appeared under the name “restriction of derived types” in
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» It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.



The Safety Restriction

» First appeared under the name “restriction of derived types” in
“lO and Ol Hierarchies” by W. Damm, TCS 1982

» It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.

» (A1, - ,Ap, 0) is homogeneous if Ay, ..., A, are and
ord Ay > ord Ay > --- > ord A,.

Definition (Knapik, Niwinski and Urzyczyn (2001-2002))

All types are assumed to be homogeneous.

An order k > 0 term is unsafe if it contains an occurrence of a
parameter of order strictly less than k. An unsafe subterm t of t/
occurs in safe position if it is in operator position (t' = ---(ts)---).
A grammar is safe if at the right-hand side of any production all
unsafe subterms occur in safe positions.




Some Results On Safety

Damm82
KNUO02

KNUO02

Ong06
Caucal02

HMOS06

AdMO04

For generating word languages, order-n safe grammars
are equivalent to order-n pushdown automata.
Generalization of Damm’s result to tree generating safe
grammars/PDAs.

The Monadic Second Order (MSO) model checking
problem for trees generated by safe higher-order
grammars of any order is decidable.

But anyway, KNUO2 result’s is also true for unsafe
grammars...

Graphs generated by safe grammars have a decidable
MSO theory.

Caucal’s result does not extend to unsafe grammars.
However deciding p-calculus theories is n-EXPTIME
complete.

Proposed a notion of safety for the A-calculus
(unpublished).



Simply Typed A-Calculus

v

Simple types A:=0 | A — A.

v

The order of a type is given by order(o) = 0,
order(A — B) = max(order(A) + 1, order(B)).

Jugdements of the form ' M : T where I is the context, M is
the term and T is the type:

v

rN=mM:A

Vo) carxa WK arwmalch
(o )FI—M:A—>B FEN:A (abs) Mx:A-M:B
PP - MN:B - AAM:A— B

0—0,,0

Example: f:0— 0 — o0,x:0F (Ap°°x°.¢ x)(f x)
A single rule: [-reduction. e.g. (Ax.M)N — 5 M[N/x]

v

v



The Safe A-Calculus

The formation rules

rM=sM: A
_ k) ———TCA
(ar) e arxa Warmalc
(a )FI_MZ(Al,...,A/,B) r|_5N12A1 FI—SN,:A,
PP [y MN;...N,: B
with the side-condition Vy € [ : ordy > ord B
(abs) Mxi:A1...xp: ApFs M B

s A AL .. xp ALM A — ... A, — B

with the side-condition Vy € [ tordy > ord A; — ... — A, — B

Lemma
IfT =5 M : A then every free variable in M has order at least ord A.
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Variable Capture
The usual “problem” in A-calculus: avoid variable capture when
performing substitution: (Ax.(Ay.x))y —ga (Ay.x)[y/x] # Ay.y
1. Standard solution: Barendregt's convention. Variables are

renamed so that free variables and bound variables have
different names. Eg. (Ax.(Ay.x))y becomes (Ax.(Az.x))y which
reduces to (Az.x)[y/x] = Az.y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of (3-reductions.

2. Another solution: use the A-calculus a la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.

Drawback: the conversion to nameless de Brujin A-terms
requires an unbounded supply of indices.

Property

In the Safe A-calculus there is no need to rename variables when
performing substitution.
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Examples
1. Contracting the [-redex in the following term
f:o—0—o0,x:0kF (Ap° °x% x)(f x)
leads to variable capture:

(Apx.p x)(f x) A5 (Ax.(f x)x).

Hence the term is unsafe. Indeed, ordx =0<1=ordf x.
2. The term (Ag°°x°.¢ x)(Ay°.y) is safe.
3. Safety does not capture “variable-renaming uselessness”.

E.g. the unsafe term Ay°z°.(Ax°.y)z can be contracted using
capture-permitting substitution.

4. Up to order 2, B-normal terms are always safe.

5. Kierstead terms Af((2:0):9) f(\x°.f(\y°.y)) is safe but
AfF((0:0):0) £(\x° f(Ay°.x)) is unsafe.
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Transformations preserving safety

» Substitution preserves safety.

» (-reduction does not preserve safety: Take w,x,y,z : o0 and
f:(0,0,0). The safe term (Axy.f x y)z w (-reduces to the
unsafe term (Ay.f z y)w which in turns reduces to the safe
term f z w.

» Safe (-reduction: reduces simultaneously as many (3-redexes as
needed in order to reach a safe term.

» Safe (-reduction preserves safety.
» 7-reduction preserves safety.

> 7-expansion does not preserve safety.
E.g. FsAy°z°.y :(o,0,0) but t/s Ax°.(Ay°z°.y)x : (o, 0, 0).

» 7-long normal expansion preserves safety.



Expressivity

Safety is a strong constraint but it is still unclear how it restricts
expressivity:
» de Miranda showed that at order 2 for word languages,

non-determinism palliates the loss of expressivity. It is unknown
if this extends to higher orders.

» For tree-generating grammars: Urzyczyn conjectured that safety
is a proper constraint i.e. that there is a tree which is
intrinsically unsafe. He proposed a possible counter-example.

» For graphs, HMOSO06's undecidability result implies that safety
restricts expressivity.

» For simply-typed terms: ...



Numerical functions

Church Encoding: for n € N, n = Asz.s"z of type
I =(0o—0)—0—o.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type
I — ... — | are exactly the multivariate polynomials extended with
the conditional function:

x, ift=20

cond(t,x,y) = { y, ift=n+1.

cond is represented by the term C = AFGHax.H(\y.Gax)(Fax).



Numerical functions

Church Encoding: for n € N, n = Asz.s"z of type
I =(0o—0)—0—o.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type
I — ... — | are exactly the multivariate polynomials extended with
the conditional function:

x, ift=0

cond(t, x.y) :{ y, ift=n+1.

cond is represented by the term C = AFGHax.H(\y.Gax)(F ax).

Theorem

Functions representable by safe \-expressions of type | — ... — |
are exactly the multivariate polynomials.

So cond is not representable in the Safe A-calculus and C is unsafe.
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Game semantics
Model of programming languages based on games (Abramsky et al.;
Hyland and Ong; Nickau)
» 2 players: Opponnent (system) and Proponent (program)

» The term type induces an arena defining the possible moves
[N] = /C‘I [N—N] = //q(i\
0 1\ ql o 1 -

o1

» Play = sequence of moves played alternatively by O and P with
justification pointers.

> Strategy for P = prefix-closed set of plays. sab in the strategy
means that P should respond b when O plays a in position s.

» The denotation of a term M, written [M], is a strategy for P.
> [7:N]={e,q,q 7}

[succ : N — N] = Pref({q°q*n(n+1) | n € N})
» Compositionality: [succ 7] = [succ]; [7]
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Computation tree: AST of the n-long normal form of a term.
Example: M = A\z.(\gx.fx)(\y.y)z of type (0 — 0) — 0 — o.

X—y—w—oé/
x
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Computation trees and traversals

Computation tree: AST of the n-long normal form of a term.
Example: M = A\z.(\gx.fx)(\y.y)z of type (0 — 0) — 0 — o.

Traversal: justified sequence of nodes
representing the computation.
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Computation trees and traversals

Computation tree: AST of the n-long normal form of a term.
Example: M = A\z.(\gx.fx)(\y.y)z of type (0 — 0) — 0 — o.

Traversal: justified sequence of nodes
representing the computation.

e .

t= Az -0 -Xgx - f-A-x-X-z

Traversal reduction: keep only nodes 7 \
hereditarily justified by the root.
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Computation trees and traversals

Computation tree: AST of the n-long normal form of a term.
Example: M = A\z.(\gx.fx)(\y.y)z of type (0 — 0) — 0 — o.

Traversal: justified sequence of nodes
representing the computation.

e .

t= Az -0 -Xgx - f-A-x-X-z

¢
Traversal reduction: keep only nodes T \
hereditarily justified by the root. )‘TEX )\‘y A
m f y z
tlr=XMz-f-X-z \
|
X

©-nodes removal:

t—Q@= Az -dgx - f - A -Xx-)X-zZ



The Correspondence Theorem

Let M be a simply typed term of type T. There exists a partial
function ¢ from the nodes of the computation tree to the moves of
the arena [ T] such that

. Trav(l\/l)_@i«l\/l»

©: Trav(M)rri[[M]] .

where
» Trav(M) = set of traversals of the computation tree of M
> Trav(M)I" ={t | r | t € Trav(M)}
» Trav(M)™® = {t - @ | t € Trav(M)}
» [M] = game-semantic denotation of M

» ((M)) = revealed denotion (i.e. internal moves are uncovered.)



The Correspondence Theorem (example)

Left: computation tree. Right: arena.

Az $ qt

2N
Take the traversal t = Afz - @ - A\gx - f - X - x - A - z. We

P e NN

have: p(t [ r)=¢( Mz - f - X-2z)= q! g3 g* q2 € [M].



The Correspondence Theorem (2)

Computation tree notions ‘ Game-semantic equivalents
computation tree arena(s)
traversal uncovered play
reduced traversal play
path in the computation tree | P-view of an uncovered play
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Game-semantic Characterisation of Safety

» The computation tree of a safe term is incrementally-bound :
each variable x is bound by the first A-node occurring in the
path to the root with order > ord x.

> By the Correspondence Theorem, this implies that:
Proposition

» Safe terms are denoted by P-incrementally justified strategies: each
P-move m points to the last O-move in the P-view with order
> ord m.

» Reciprocally, if a closed term is denoted by a P-incrementally justified
strategy then its n-long B-normal form is safe.

Corollary

Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.




Compositionality

Question Do P-incrementally-justified strategies compose?

No. Take o = [Fs Ax°v°.x : 0 — (0,0)] and

= IP_S /\y(o,o)go((o,o),o)'SO()\uo'ya) : (07 O) - (((07 0)7 0)7 O)]] for
some constant a : 0. We have o § ;1 = [Axp.(Au.x)] which is not
P-i.j. by the previous proposition.

A B C

o = o o —  ((o, 0), 0), o




Compositionality 2
Definition
A strategy 0 : A — B is closed P-incrementally justified if it P-i.j.

and if for every move m initial in A that is contained in some play of
o we have ordg m > ord B.

» Remark: This property is not preserved up to the Curry
isomorphism!

» Example: any P-ij. strategy on | — A'is closed P-i.j.

» Safe terms denotations are closed P-i.j.



Compositionality 2
Definition
A strategy 0 : A — B is closed P-incrementally justified if it P-i.j.

and if for every move m initial in A that is contained in some play of
o we have ordg m > ord B.

» Remark: This property is not preserved up to the Curry
isomorphism!

» Example: any P-ij. strategy on | — A'is closed P-i.j.

» Safe terms denotations are closed P-i.j.

Proposition J

Closed P-incrementally justified strategies compose.

Hence we have:
> a category of games and closed P-i.j. strategies,
» that is not cartesian-closed,
» which models the safe \-calculus.



Safe PCF

» PCF = A with base type N + successor, predecessor,
conditional + Y combinator

» Safe PCF = Safe fragment of PCF

Proposition
Safe PCF terms are denoted by closed P-i.j. strategies.

Definability

Let o be a well-bracketed innocent P-i.j. strategy with finite view
function defined on a PCF arena Ay x ... X A; — B. o is the
denotation of some term X : A+ M : B such that Ax.M is safe.

Question: Does this give a fully abstract model with respect to safe
contexts? Problem: The quotiented category model is not rational
(since it is not even cartesian closed)!



Conclusion and Future Works

Conclusion:
Safety is a syntactic constraint with interesting algorithmic and
game-semantic properties.
Future works:
» Is there a fully abstract model of Safe PCF (with respect to safe
contexts)?

» Complexity classes characterised with the Safe A-calculus?

> Safe ldealized Algol: is contextual equivalence decidable for
some finitary fragment (e.g. Safe 1A4) (with respect to all/safe
contexts) ?
Related works:
» Jolie G. de Miranda’s thesis on safe/unsafe grammars.
» Ong introduced computation trees in LICS2006 to prove

decidability of MSO theory on infinite trees generated by
higher-order grammars (whether safe or not).
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